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Abstract

Human bias and significant intra- and inter- observer
variance exist in electrocardiogram QT interval evalua-
tion. A Bayesian approach (BA) with an informative prior,
that combines measures from multiple humans or algo-
rithms as well as contextual information (such as heart
rate and signal quality) was developed for inferring the
true QT length. The developed method is compared to
the mean and median voting approaches by computing the
root-mean-square (RMS) error between the computed QT
lengths and the reference annotations provided by the 2006
PhysioNet/Computing in Cardiology Challenge. The BA
with features can reduces the human RMS error of QT es-
timates to 6.04ms and 13.97ms for automated algorithms,
out-performing the results in the Challenge of 6.67ms and
16.34ms respectively. For three annotators, the BA had a
10.7% improvement over the next best voting strategy for
manual annotations, and 14.4% for automated algorithms.
For large numbers of annotators, the BA estimates became
approximately equal to the best-performing annotator.

1. Introduction
The Electrocardiogram (ECG) is a standard and power-

ful tool for assessing cardiovascular health. Disagreements
in ECG diagnostic annotations may be due to intrinsic dif-
ficulties in interpreting the signals that are linked to the
level of training or experience of the annotators[1]. Dis-
agreements may be exacerbated by significant amounts of
noise such as motion artefacts, electrode contact noise, and
baseline drift[2]. In this study, the potential for improving
QT interval estimation in ECGs is explored using multiple
annotators in a Bayesian voting framework.

The QT interval is a marker for ventricular depolarisa-
tion and repolarisation of the cardiac muscle cells[2]. Pro-
longation of the QT interval serves as an important risk
factor for arrhythmias and sudden cardiac death[3]. In
addition to the high costs for manual annotations, previ-
ous studies have reported significant intra- and inter- ob-
server variability in QT annotations, ranging from 10 to
30ms[4, 5]. Manual annotators also appear to underesti-
mate the true T wave end-point due to various T wave mor-
phologies and different noise sources[6]. In comparison to

manual annotators, automated algorithms offer time effi-
ciency, repeatability, and cost-savings benefits.

One of the major challenges for automated annotation
of the ECG is the substantial discrepancy in the QT in-
terval estimation when compared to manual methods[7].
As there is no recommendation in guidance for regulat-
ing automated algorithms, it is difficult to assess the ac-
ceptability of automated annotation algorithms. The Phy-
sioNet/Computing in Cardiology (PCinC) 2006 Challenge
strove for accurate QT interval measurements on a pub-
licly available database, with the best automated algorithm
achieving an error of 16.34ms[8].

In situations where the ground truth is not readily avail-
able, it is common to have multiple different annotators
evaluate the data to provide aggregate labels. Simple
methods like the mean and median methods generally per-
form well only if there are a large number of annotators
available. A more effective and less biased probabilis-
tic approach, combining annotations using expectation-
maximization (EM), was first proposed by Dawid and
Skene for error measurements in patient records based on
the results from multiple responses without a gold stan-
dard[9]. The crowd-sourcing EM method proposed by
Raykar et al.[10] was similar to the model proposed by
Dawid and Skene[9]. It extended the original method
by jointly estimating the annotation labels with a regres-
sion model. In the context of QT estimation, a crowd-
sourcing algorithm was proposed by Moody[8] at the
PCinC 2006 Challenge. The “Meta-6” algorithm com-
bined the strengths of the three best-performing annotators
from both the open source and closed source automated al-
gorithms. It excluded records rejected by more than one of
these six algorithms as well as those mostly disagreed. The
QT intervals were estimated from the remaining records
by taking the medians of the measurements. When com-
pared to the reference QT interval, the “Meta-6” algorithm
achieved a root mean squared error of 10.93ms.

The crowd-sourcing EM algorithm proposed by Raykar
et al.[10] is applied to QT interval estimation to assess the
feasibility and potential of the Probabilistic EM Algorithm
(PEMA) in a Bayesian framework to improve QT inter-
val estimation. As differentiating the physiologic changes
from noise is one of the major challenges in observing sin-
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gle lead QT dynamicity (i.e. Beat specific QT changes), a
surrogate for the heart rate and signal quality is jointly es-
timated with the annotations. These results were compared
to the mean and the median voting strategies.

2. Methods
2.1. Multivariate regression

In this study, it is assumed that we have N records from
R annotators. Let D = [xi, y

j=1
i , · · · , yRi ]Ni=1, where xi

is a feature vector for the ith observation, and yj corre-
sponds to the given annotation provided by the jth annota-
tor whereas yi represents the true unknown annotation. In
the context of QT interval analysis, we assume that yji is
a noisy version of yi (i.e. the true length of the QT inter-
val), which can be described using a Gaussian model. The
precision of the jth annotator, λj , is defined as the inverse-
variance in the model. Furthermore, yi can be predicted
using a multivariate regression model as yi = wTxi + ε,
where w is the regression coefficients and ε is a zero-mean
Gaussian noise.

2.2. The EM algorithm
The likelihood of the parameter θ = {w, λ} for a given

D can be solved using the EM algorithm proposed by
Dempster et al.[11] in two-step iterative process: i) The E-
step estimates the expected true annotations for all records,
ŷ, each is a weighted sum of the provided annotations from
all annotators and their precisions:

ŷ =

∑R
j=1 λ

jyj∑R
j=1 λ

j
(1)

ii) The M-step is based on the current estimation of ŷ
and D, then the model parameters such as the precision
and regression coefficient, λ and w, can be calculated by
solving the zero gradient of the log-likelihood respectively:

w = (
N∑
i=1

xixTi )−1
N∑
i=1

xiŷi (2)

1/λj =
1
N

N∑
i=1

(yji −wTxi)2 (3)

Note: w may be solved using a standard linear regression
model with features, x, except it is trained with ŷ as the
predicted ground truth. In this instance, ŷ is a precision
weighted mean of the response from all the annotators.

When features, x, are not available, the precision may
be solved as the least square difference between the actual
ground truth and the predicted one.

An equal λ as a prior among all annotators is assumed to
initialise the PEMA, and the initial guess of the expected
QT annotation is set to be ŷ = 1

R

∑R
j=1 yj . Then the E-

step and M-step can be iterated until convergence of λ. As
a result, the PEMA establishes a weighted sum of annota-
tions estimating the expected true annotations, as well as
providing the precision of each annotator.

2.3. Data description
The data were drawn from the QT interval annota-

tions generated from participants in the PCinC 2006 Chal-
lenge[8]. There were two categories of annotations: man-
ual and automated. A total of 89 entries including revised
submissions, with 38,621 annotations were considered: 20
human annotators in Division 1, 48 automated algorithms
in Division 2 (closed source), and 21 in Division 3 (open
source). Division 4 had a total of 69 automated algorithms
as it combined annotators from Division 2 and 3. A sin-
gle record, “patient285/s0544re”, was excluded as it did
not contain any recognisable ECG signals. Annotations for
548 records of the Physikalisch-Technische Bundesanstalt
Diagnostic ECG Database (PTBDB) were processed us-
ing the PEMA, mean, and median voting strategies. The
competition score for each entry was calculated from the
root mean square (RMS) difference between the submitted
and the reference QT intervals, weighted by the number of
records attempted. The reference annotations were gener-
ated from Division 1’s entries as detailed in[8].

2.4. Beat detection and feature extraction
The Lead II ECG was digitised at 1000 samples per sec-

ond, with 16 bit resolution, over a range of ±16.384mV.
The records in the PTBDB came from 294 subjects, each
represented by one to five recordings. Each record was up
to 2 minutes in length. QRS waves were detected using an
open source QRS detector, eplimited[12].

The first 5-second of each record was considered in this
study as this was where the majority of annotations oc-
curred, and it also reduced large inter-beat variations. An
example of a 5-second segment is shown in Fig. 1. In
each record, the beat specific heart rates were estimated
through the R-R intervals and the square root of R-R inter-
vals together with signal quality metrics proposed in[13]
were used as features for the PEMA.

To account for inter-beat variations, each annotated rep-
resentative beat was located and a median of the five pre-
ceding R-R intervals was assigned as a feature to each an-
notator in the individual record. If the annotated beat oc-
curred at the beginning of the record, the first five beats
were considered to estimate the median R-R interval.

The signal quality indices (SQI) were measured in a 5-
second window, overlapped by four seconds to account for
the QT dynamicity. These SQI features provide extra in-
formation on the signal quality of the annotated beat in a
5-second window. An example of a noisy ECG signal is
shown in Fig. 1, large inter-observer variation (i.e. 100ms)
occurs among two human annotators who had annotated
on the same ECG beat.

2.5. Methodology of validation
The PEMA was applied to each individual division

to estimate a weighted sum of annotations and the cor-
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responding RMS errors were compared with the best-
performing scores that were published in the Challenge.
In addition, the PEMA was compared to the median and
mean voting strategies when selecting different number of
annotators. A sub-sampling method was performed by ran-
domly selecting K annotators 100 times, and this was re-
peated with K varied from 1 to the maximum number of
annotators in each division. The mean and standard error
(µ±σµms) of the RMS error of the PEMA, the mean, and
the median were calculated and assessed. The average per-
centage of records with full annotation was also measured
when selecting different number of annotators.

Figure 1. An example of a noisy 5-second ECG segment.
The QT interval was considered to be 260ms by one human
annotator (a) and 361ms by a second human annotator (b).

3. Results
The minimum RMS error in estimating the QT interval

of the PEMA with and without features were estimated and
compared as shown in Table 1. The PEMA RMS errors
without features were significantly larger than those with
features at 95% level of confidence. The PEMA using the
beat-specific heart rate and SQI as features provided better
RMS results as compared to the results of using other type
of features.

The PEMA RMS error was 6.04ms when considering all
human annotators in Division 1. It outperformed the mean
voting strategy for all number of annotators but was worse
than the median voting approach (RMS = 4.71ms for 20
annotators) after nine annotators. Using 15 out of 20 an-
notators (RMS = 6.62±0.98ms) for the PEMA achieved a
similar error as the best score (RMS = 6.67ms) provided in
the Challenge. In Division 2, the PEMA consistently out-
performed the other two approaches and achieved a min-
imum RMS of 14.58ms when considering all 48 annota-
tors. Seventeen annotators (RMS = 15.68±1.83ms) from
Division 2 would be required for the PEMA to generate a
similar RMS error as the best-performing annotator (RMS
= 16.34ms). In Division 3, the PEMA continued to out-
perform the other two approaches and achieved a RMS of
16.58ms when considering 21 annotators. It also achieved
less RMS error when compared with the best-performing
annotator (RMS = 17.33ms) in this division. The PEMA
had an RMS error of 13.97ms on Division 4 (see Fig. 2).

Table 1. Minimum RMS errors in ms of the PEMA with-
out features (NF) and with HR, SQI or both.

Division
(annotators)

NF SQI HR HR+SQI

1 (20) 6.87 6.65 6.22 6.04
2 (48) 15.03 14.85 14.61 14.58
3 (21) 18.87 17.80 16.66 16.58
4 (69) 14.74 14.24 14.12 13.97

Figure 2. The mean and standard error of the RMS re-
sults of using the PEMA with features, median and mean
voting are shown for the automated entry. The x-axis indi-
cates selection of number of annotators. These plots were
generated from 100 random subsets of annotators.

4. Discussion
In this study, the percentage of records with a complete

set of annotations for all annotators was inversely propor-
tional to the number of annotators. Randomly selecting
fewer numbers of annotators without considering their an-
notations could lead to reduction in the average percentage
of records with annotations (see Fig. 2). When increas-
ing number of annotators further, the average percentage
of records which were fully annotated by all participating
annotators decreased to zero.

The PEMA with additional SQI and HR features pro-
duced a significantly smaller RMS error as compared to
those using the features of heart rate alone, when select-
ing maximum number of annotators in all divisions (see
Table 1). In all divisions, errors were significantly lower
(p < 0.05 using a two-sided paired t-test) for HR, SQI,
and HR+SQI than for NF, and for HR+SQI than for either
HR or SQI individually.

Commonly, only three annotators are used to identify
the QT interval length, and they may collaborate for la-
belling the QT interval. This type of direct collaboration
often incorrectly weights one annotator and is more bias
and less effective. In the situation where the annotators op-
erate independently, the PEMA provides a 10.7% improve-
ment over the next best voting strategy for manual annota-
tions, and 14.4% for automated annotations (see Fig. 2).
Therefore, combining human annotators using the PEMA
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could potentially provide an optimal ‘gold standard’ in QT
estimations even in the case when the ground truth is not
available.

The reference QT intervals in this study were provided
based on bootstrapping the median of up to 15 annota-
tors, which explained the case when increasing the num-
ber of annotators the PEMA performed slightly worse than
the median voting strategy. Furthermore, human annota-
tors generally underestimate the QT intervals as mentioned
in[6]. Therefore, the errors provided in the automated en-
tries were always larger than those in the manual entries.

Among the entries for automated algorithms, the RMS
error in Division 4 estimated using the PEMA cannot be
compared directly with the results of the “Meta-6” al-
gorithm (RMS = 10.93ms). This is because out of 548
records, the “Meta-6” algorithm had excluded approxi-
mately 26 records from the PTBDB based on arbitrary dis-
agreements between annotators, whereas the PEMA con-
sidered all records that were available.

5. Conclusion
The accuracy of estimating the QT interval for a chan-

nel of ECG (Lead II) using multiple independent annota-
tors was analysed and compared in this study using dif-
ferent voting strategies. The PEMA was shown to con-
sistently outperform the median voting algorithms for less
than nine human annotators and for any number of auto-
mated algorithms. For large numbers of annotators, the
PEMA estimates became approximately equal to the best-
performing annotator, even though the identity of the best
annotator was unknown. In addition, it outperformed the
mean voting strategy in all circumstances. Therefore, the
PEMA has the potential to provide a more realistic ref-
erence when no gold standard exists. That is, since the
PEMA approach works by comparing inter-annotator vari-
ations, no absolute reference data is required. The RMS er-
ror of 13.97ms when combining multiple algorithms (69 in
total), is the lowest so far reported in the literature for non-
human QT estimation. The PEMA with the beat-specific
heart rate and SQI features not only addresses the issue of
large inter- and intra- observer variation, but also provides
an improvement in QT estimation as compared to the me-
dian and mean voting strategies when there are few anno-
tators. In particular, the use of features provides contex-
tual information so that the PEMA can learn how varying
physiological and noise conditions affect each annotator
differently. This approach, or incorporating context into
weighting of annotators, is likely to have a larger impact
for noisier data sets or annotators with a variety of special-
isations or skill levels.
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