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Abstract 

Due to the inherent noisy, low resolution and limited 
imaging range of echocardiography, it is difficult to 
identify mitral annulus (MA) where valves end that is 
crucial for further segmentation, modeling and multi-
modalities registration of mitral valves. This work aims to 
automatically detect MA hinge points combining 
information of intra-cardiac local context and location 
relationships. The method includes the following steps: (1) 
segment left ventricle (LV) by prior shape and local 
histogram fitting based Active Contour Model (ACM); (2) 
design the local context features for training and 
classification of MA hinge points; (3) utilize additive min 
kernel based Support Vector Machines (SVM) classifier 
for fast computation to obtain MA candidates; (4) 
estimate MA hinge points by K-means algorithm under 
the location constraint of LV and MA. Our method was 
tested on echocardiographic four chamber image 
sequence of 10 pediatric patients (6 boys, 4 girls, 7.6±
3.4 years). Compared with the manual annotations, the 
automatically detected MA results are reliable with 
reasonable accuracy, for lateral point (2.0±1.9, 1.8±
1.2) pixels and for septal point (2.9±2.6, 1.2±1.0) pixels. 

1. Introduction

The mitral annulus (MA) is an essential intra-cardiac 
structure defined as a saddle shape that anchors the mitral 
valves. Studies on MA geometry have shown potential 
values in the assessment of mitral function, pathological 
diagnosis, surgical valve reconstruction planning, and 
model simulating. 

Detection and segmentation of MA are the crucial pre-
procedure for MA analysis [1, 2]. [3] suggested an 
automated tracking method of MA motion using dynamic 
programming. [4] introduced graph cut to segment MA in 
3D echocardiography. [5] proposed a patient-specific 
modeling and quantification of mitral valves combining 

thin tissue detector and active contour model (ACM). [6] 
utilized learning algorithm to segment aortic and mitral 
valves in a cardiac cycle from CT and TEE. 

This work presents an automatic detection method of 
MA hinge points. First, left ventricle is segmented using 
ACM based on prior shape and local histogram fitting. 
Then MA hinge points are detected by additive Support 
Vector Machines (SVM) classifier from local context 
features and prior location constraint of LV and MA. 

2. Method

2.1. Left ventricle segmentation 

Our method of LV segmentation applies prior LV 
shape and local histogram fitting based ACM. 

Learning a LV shape model includes registration and 
modeling of LV prior shape set. The signed distance 
function based rigid registration method in [7] is used to 
align shape training set to obtain a aligned shape set 
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gradient descent equation can be written as: 
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where wSi is the shape force weight of i. 
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The iteration is stop till its convergence. The obtained 
prior shape model then is applied to guild the curve 
evolution in ACM. 

Local fitting energy function is proposed to segment 
regions with hard-predefined distributions [9]. Then Liu 
et al presented a nonparametric region-driven ACM using 
local histogram fitting energy [10]. The energy function is 
defined as: 
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where given a point x∈  is the level set function. Pi

x 
and Po

x are the fitting histograms approximate the 
distribution inside and outside the evolving curve at x, 
respectively. K(x-y) is Gaussian kernel function with 
variance  is a constant.  ,D   is the histogram 

distance. If Wasserstein distance used, first for a fixed 
level set function, the updating function of local fitting 
energy, namely local cumulative histogram are:  
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Then with fixed iF x and oF x , the curve evolution function 

is obtained as follows by gradient descent: 
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 Note that the larger , the more global information 
involved.  

Then LV prior shape is combined into the local 
histogram fitting based ACM to balance the shape and 
local features. If Wasserstein distance used, the model 
minimizes 
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s.t.
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where is the optimized shape model, and B is the 
backward transformation.  

In order to avoid leaking out, an inequality of distance 
of local fitting histograms of current inner and outer 
curves is introduced to balance and local fitting 
histograms:  
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when Wasserstein distance used. If it’s satisfied, the 
current is enlarged. Solving the whole variational 
model has two stages to set different values for 
convergence to a local minimum. 
Meanwhile, two strategies are applied to speed up 
computation: SDF based fast level set algorithm [11] and 
grayscale compression [12]. 
 
2.2. Local context feature design 

In the cross-sectional planes along the long axis 
direction, the junction points between the annulus and the 
leaflets are hinge points on the annulus [13].  

Because of inherent noisy, low spatial resolution and 
limited imaging range, intra-cardiac structures may be 
edge-blurred and of similar intensities. The general image 
detectors fail in echocardiographic images. Meanwhile, 
spatial relationships of atrium and ventricle are fixed in 
the echocardiography. Therefore in this work, a local 
context feature is obtained for subsequent classification of 
MA hinge point candidates for intra-cardiac structures in 
echocardiography. Ideally, every pixel in the 
neighborhood can be put into context. However, this 
would generate a large feature space. Therefore, sparely 
sampling could enhance training and classification. In this 
work, the local context feature of a pixel is obtained from 
sparely sampling the context locations on eight rays in 45 
degree intervals. A context location sequence {1, 3, 5, 8, 
11, 15, 19, 23} is used for each ray. Their intensity and 
mean intensity in 3×3 window are chosen as features. 
These context features represent the local intra-cardiac 
configuration information of interest. Note that the 
context location sequence is different in specific 
applications. 

 
2.3. Additive min kernel SVM classifier 

Additive min kernel SVM classifier is applied to 
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obtain MA hinge point candidates from local context 
features. The basic concept of additive kernel SVM will 
be briefly described as follows. More details can be found 
in the reference [14]. 

Supposing the training data denoted 
by 1{( , )}N

i i iy x with { 1,1}iy   , n
ix  R , a C-SVM 

formulation is used here [15]. The min kernel is 

min ( , )K x z  defined as: 

 min ( , ) min( , )
n

i i
i

K x zx z 

The evaluating function of classification is  
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So the function ( )h  can be rewritten as a sum of 1D 

functions ( )ih  , where 
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This decomposition allows approximating each 
dimension function to gain the approximate solution of 
the classifier. Therefore, additive kernel SVM has 
advantages of nonlinearity and fast calculation. 

 
2.4. Outline of method 

The complete process of our method is summarized as 
follows: 

(1) Register and learn of LV shape training set. 
(2) Initialize the evolving curve and KDE shape model. 
(3) Compress the grayscale to 25 and calculate iF x and 

oF x of each pixel. 

(4) First stage: setting  
(5) Optimize parameters of registration and shape 

model. 
(6) Calculate  Lagrange multiplier  
(7) Check whether the inequality is satisfied to enlarge 

the kernel width and iterate evolving curve 
equation. 

(8) Check whether convergence or maximum iterative 
number is reached. If not, go to (5). 

(9) Second stage: setting  

(10)  Calculate  Lagrange multiplier  
(11) Check whether the inequality is satisfied to enlarge 

the kernel width and iterate evolving curve 
equation. 

(12) Check whether convergence or maximum iterative 
number is reached. If not, go to (10). 

(13) Training the additive min kernel SVM from local 
context feature set of MA. 

(14) Classify and gain the MA candidates. 
(15) Check whether the distance between MA candidate 

and LV is larger than the threshold. If yes, dismiss. 
(16) Gain the clustering center as MA hinge points by 

K-means. 
 

3. Experiments and results 

RT3DE scanning is performed with a commercial 
available system (Sonos 7500, Philips, Co.) in Shanghai 
Children’s Medical Center affiliated to Shanghai Jiao 
Tong University. The 3D echocardiograhy are formatted 
as 208×160×144 per frame. 10 normal young children 
(6 boys, 4 girls, 7.6±3.4 years) are selected in this work. 
 
 
 

  
(a)                      

  
                                            (b) 
Figure 1. Segmentation of left ventricle in ultrasound 
images of the heart: (a) are the images to be segmented; 
(b) are the segmentation results using our method. The 
red contours correspond to the deformable shapes, and the 
green ones the evolving curves. 
 
 

Figure 1-3 are results of LV segmentation, additive 
kernel SVM classification and clustering centers of K-
means, respectively. The performance of our method is 
evaluated by comparison with manual segmentation with 
the errors summarized in Table 1. The results indicate 
that our method achieves acceptable accuracy. 
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Figure 2. The results of additive min kernel based SVM 
classifier using local context features. 
 
 

    

       
Figure 3. Automatic identification of mitral annular hinge 
points in a cardiac cycle (red points). 
 
Table 1. Errors between our method and manual 
segmentation results. 
 

 Lateral(left) Septal(right) 
 x y x y 
 mean std mean std mean std mean std 

pixel 2.0 1.9 1.8 1.2 2.9 2.6 1.2 1.0 

 

4. Conclusions 

This work provides an effective tool for automatic 
detection of MA hinge points in echocardiography that 
could support further mitral segmentation, modeling and 
multimodality registration.  
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