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Abstract

ECG signals are corrupted by several kinds of noise
and artifacts, which negatively affect any subsequent anal-
ysis. In the literature, the only approach that can han-
dle any noise and artifacts corrupting the ECG is linear
time-invariant filtering. However, it suffers from some im-
portant limitations regarding effectiveness and computa-
tional complexity. In this paper we propose a novel frame-
work for ECG signal preprocessing based on the notion
of quadratic variation reduction. The framework is very
general, since it can cope with all the different kinds of
noise and artifacts that corrupt ECG records. It relies on
a single algorithmic structure, thus enjoying an easy and
robust implementation. Results show that the framework is
effective in improving the quality of ECG, while preserv-
ing signal morphology. Moreover, it is very fast, even on
long recordings, thus being perfectly suited for real-time
applications and implementation on devices with reduced
computational power, such as handheld devices.

1. Introduction

The electrocardiogram (ECG) is the standard diagnostic
tool for the routine assessment of heart function and the
diagnosis of cardiac diseases. Unfortunately, the ECG sig-
nal is highly susceptible to several kinds of noise, such as
electromyographic noise, power-line interference, motion
artifacts, baseline wander, thermal and other measurement
noise [1].

The most straightforward approach to ECG preprocess-
ing is linear time-invariant (LTI) filtering, whether low-
pass, high-pass or notch according to the kind of noise to
remove [1]. This approach can be considered the only gen-
eral method that is able to handle any noise and artifact cor-
rupting the ECG. Indeed, it is implemented in every elec-
trocardiograph used in the clinical practice [2]. However, it
may introduce unacceptable distortions in the ECG [3] and
residual noise might be present in the filtered signal. More-
over, although efficient implementations exist, sophisti-
cated filters can hardly be implemented on devices with

reduced computing power, such as mobile phones or hand-
held devices. Conversely, in recent years growing inter-
est has been focused on the development of algorithms for
assessing the quality of ECG running on mobile phones,
which are nowadays pervasive [4]. This is particularly im-
portant when working in depressed areas of less-developed
countries, where, due to a lack of adequate primary care
capacity, ECG is acquired under not ideal conditions, of-
ten by untrained people, and with low-cost recorders, i.e.,
more sensitive to artifacts and noise [4].

To this end, in this paper we propose a novel framework
for ECG signal preprocessing. It is based on the notion
of quadratic variation reduction (QVR). The framework
is very general, since it is able to cope with all different
kinds of noise and artifacts that corrupt ECG recordings:
baseline wander, narrowband artifacts (such as power-line
interference), electromyographic and thermal noise. More-
over it can be used for single waves, e.g., P-waves and T-
waves, and entire ECG records [5–8]. The main strengths
of the framework are the following. First, it is simple,
since a single algorithmic structure can easily handle all
different kinds of noise by setting the appropriate values
of its controlling parameters. Second, it is very effective
in improving signal quality, while preserving ECG mor-
phology. Finally, it is fast and computationally efficient,
even on long recordings, thus being perfectly suitable for
real-time implementation on handheld devices.

The paper is organized as follows. In Section 2 the no-
tion of quadratic variation is introduced. The rationale be-
hind the framework is described in Section 3. Sections 4
and 5 follow with simulation results and conclusions.

2. The quadratic variation

The effect of noise and artifacts on the ECG, regardless
of their kind, consists in introducing additional “variabil-
ity” into the observed signal with respect to the true one.
Thus, provided that we introduce a suitable measure of
variability, noise and artifacts can be suppressed by prop-
erly reducing the variability of the measured ECG.

To quantify the variability of a generic vector x =
[x1 · · ·xn]T ∈ Rn, with n ≥ 2, we introduce the quadratic
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variation (QV) of x, denoted by [x], defined as

[x]
.
=

n−1∑
k=1

(xk − xk+1)
2
= ‖Dx‖2 , (1)

where ‖·‖ denotes the Euclidean norm and D is the (n −
1)× n matrix with entries

Dij = δi,j − δi+1,j (2)

where δi,j is the Kronecker delta. The QV is a consis-
tent measure of variability: for vectors affected by additive
noise, regardless of the noise distribution, on average it is
an increasing function of the noise variance [5].

The QV quantifies the variability of an entire ECG
record or just a single wave, considered as a whole. How-
ever, the variability introduced by noise and artifacts is
time-varying, since signal morphology changes over time,
and noise and artifacts can be persistent, like thermal noise,
or transient, like electromyographic noise. In this regard,
the QV is also well suited to characterize the local variabil-
ity of different segments of the ECG, like QRS complexes,
P-waves or T-waves, which in general exhibit different lo-
cal SNRs. Indeed, denoting by x(k1, k2) = [xk1 · · · xk2 ]

T,
with 1 ≤ k1 < k2 ≤ n, a generic subvector of x, its
quadratic variation can be expressed in terms of x as

[x(k1, k2)] = ‖DS(k1, k2)x‖2 = ‖Dix‖2 , (3)

where Di = DS(ki, ki+1) and S(k1, k2) ∈ Rn×n is a
diagonal matrix defined as

S(k1, k2) = diag (s1, · · · , sn)

with

si =

{
1 , k1 ≤ i ≤ k2
0 , otherwise

.

Narrowband artifacts, such as power-line interference,
require additional considerations. Their effect can be
quantified using the QV in (1), however a different mea-
sure proved to be more effective in this case [7, 8], namely
their energy content. To quantify it, let X = Wx be the
DFT [9] of x, where W is the DFT matrix. Now, de-
note by W̃f the matrix obtained stacking the rows of W
corresponding to the harmonic components of the narrow-
band artifact centered around frequency f , which is to be
rejected. The quadratic form

Ex(f) =
∥∥∥W̃fx

∥∥∥2 = xTRe
{
W̃

H
f W̃f

}
x (4)

quantifies the energy content of such an artifact, with (·)H

denoting the transpose conjugate and Re {·} the real part.

3. Denoising by QV reduction

In the following, q ∈ Rn is the measured ECG, which
is affected by noise and artifacts, and x the corresponding
vector after denoising. The idea is that any kind of noise
and artifacts affecting q can be removed by reducing the
quadratic variation of the measured ECG, either locally or
globally, and the energy content of narrowband artifacts.
The magnitude of such a reduction, either local or global,
is inversely related to the local or global SNR, respectively.

Let the vector q be decomposed into L+ 1 segments

q(ki, ki+1) = [qki · · · qki+1 ]
T, for i = 0, . . . , L (5)

with 0 ≤ L ≤ n − 1 and 1 = k0 < k1 < · · · < kL <
kL+1 = n. Segments in (5) denote distinct portions of the
ECG, like QRS complexes, P-waves or T-waves, exhibit-
ing different local SNRs. Note that two consecutive seg-
ments overlap in order to guarantee the absence of abrupt
changes in the smoothed vector.

Denoising and artifact rejection can be achieved by solv-
ing the following convex optimization problem

minimize
x∈Rn

‖x− q‖2

subject to [x(ki, ki+1)] ≤ ai, i = 0, . . . , L
Ex(fj) ≤ bj , j = 1, . . . ,M

(6)

where [x(ki, ki+1)] is the (local) quadratic variation of
x(ki, ki+1), and Ex(fj), as defined in (4), quantifies the
energy content of the narrowband artifact centered around
fj . The constants ai > 0, for i = 0, . . . , L, control the de-
gree of smoothness applied to each segment q(ki, ki+1),
and bi > 0, for i = 1, . . . ,M , control the degree of re-
jection of the narrowband artifact centered around each fi
[8]. Note that we do not need to know in advance the ap-
propriate values for ai and bj in any particular problem.

It is possible to prove that the solution of (6) is given by

x =

I +
L∑

i=0

λiD
T
iDi +

M∑
j=1

νjRe
{
W̃

H
fjW̃fj

}−1q
(7)

where I denotes the identity matrix, and Di and W̃fj are
defined in (3) and (4), respectively. The parameters λi and
νi in (7) are related to ai and bj in (6), but are used in
their place to control the solution (7). Indeed, smoothing
can be performed without caring about ai and bj in (6),
by adapting λi and νj in (7) to meet some performance
criteria, e.g., maximizing the SNR gain.

The problem (6) and its solution (7) have general valid-
ity, and can be adapted to suppress any particular kind of
noise or artifact by setting the parameters in (7), namely
L, M , λi, νj , and the decomposition (5). Noise and arti-
facts can be suppressed one by one or jointly. Moreover,
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(7) can be also used to extract features or components from
the ECG signal. To better appreciate the generality of (7),
we report below some examples of its application.
• Baseline wander removal. Set L = 0 (only one seg-

ment q, which is the entire ECG), M = 0 (no narrowband
artifacts) and take λ0 large enough (see [5]). The resulting
x from (7) is the estimated baseline wander, which can be
subtracted from q. In [5, 6, 10] it is proven that this ap-
proach outperforms state-of-the-art algorithms in estimat-
ing baseline wander, while preserving the morphology of
all waveforms in ECG, in particular the ST segment.
• Power-line interference suppression. Set L = 0 and

λ0 = 0 (only one segment q, which can be the entire ECG
or a single wave), M > 0 equal to the number of harmon-
ics of the power-line interference to be suppressed, namely
the fundamental at 50/60Hz and some higher harmonics.
The resulting x from (7) has the power-line interference
suppressed.
• Smoothing single waves (e.g., P or T waves). Set

L = 0 (only one segment q, which is the single wave),
M = 0 (no harmonic artifacts) and set λ0 (see [11]). The
resulting x from (7) is the smoothed wave. In [11] it is
proven that this approach outperforms low-pass filtering.
If narrowband artifacts are present, in particular 50/60Hz
power-line noise, then M > 0. The special case M = 1
with harmonic artifacts is considered in [7].
• Smoothing ECG records. Set L > 0 (several segments

corresponding to different portions of the ECG, i.e., QRS
complexes, P-waves, T-waves, isoelectric segments, etc.,
with q being the ECG record), M = 0 (no harmonic ar-
tifacts) and set λi (see [12]). Note that since the ECG is
pseudo-periodic the number of independent λi is strongly
reduced [12]. The resulting x from (7) is the smoothed
ECG. In [12] it is proven that this approach largely out-
performs low-pass filtering. If narrowband artifacts are
present then M > 0. The special case M = 1 is con-
sidered in [8].

Finally, even though parameters λi and νj interact,
λi mainly controls the smoothness of the ith segment
x(ki, ki+1), whereas νj mainly controls the degree of re-
jection of the narrowband artifact centered around fj .

3.1. Computational issues

Formula (7) involves matrix inversion, which has com-
plexity O(n3). However, it is possible to prove that due to
the special structure of the matrices involved, formula (7)
can be computed with complexity ranging from O(n) to
O(n log n). In particular, when M = 0, i.e., there are no
narrowband artifacts, (7) can be computed by direct meth-
ods with complexity O(n), regardless of L. In the case
M > 0 and L = 0, i.e., only narrowband artifacts and
measurement noise are present, (7) can be computed by
direct methods with complexity O(n log n). Whereas in

the general case L > 0 and M > 0, (7) can be evaluated
with complexity O(n log n) using the conjugate gradient
method.

4. Simulation results

Performance of the proposed framework was exten-
sively investigated in several papers [5–8], considering all
kinds of noise and artifacts that usually corrupt the ECG.

Here we report an example of the performance of the
framework on an ECG record corrupted by baseline wan-
der, narrowband artifacts, measurement noise and muscle
artifacts. We considered the ECG record mitdb/118 from
the MIT-BIH Arrhythmia Database [13] from PhysioNet
[14]. It is a two-channel recording acquired at a sampling
frequency of 360Hz with 11–bit resolution and is slightly
affected by baseline wander and measurement noise. Such
a record, denoted in the following by q0, was further cor-
rupted with baseline wander, namely b, and electromyo-
graphic artifact, namely m, from the records nstdb/bw and
nstdb/ma, respectively, from the MIT-BIH Noise Stress
Test Database [15] from PhysioNet [14]. These are both
two-channel recordings acquired at a sampling frequency
of 360Hz from a physically active volunteer placing the
electrodes on the limbs in positions in which the subject’s
ECG was not visible [15]. As regards narrowband arti-
facts, we considered sine waves at 30Hz and 50Hz ac-
counting for a generic in-band artifact and power-line in-
terference, respectively. Such waves have time-varying
amplitudes obtained by low-pass filtering with cut-off fre-
quency 2Hz two independent realizations of zero-mean
white Gaussian noise. The corrupted signal, denoted by
q = q0 + b + m + d, with d the sum of the two sine
waves, is reported in Fig. 1 (red) together with the original
record q0 (blue).

In Fig. 2 we report the original ECG q0 (blue) and the
smoothed record x (red) resulting from noise and arti-
facts suppression using the proposed framework. Smooth-
ing was achieved by firstly estimating and removing base-
line wander and, then, jointly reducing the other kinds of
noise and artifacts. As regards baseline wander estimation
(L = 0, M = 0), we roughly set λ = 3600, following [5].
Joint noise and harmonic artifact suppression was applied
with different smoothing parameters to the following seg-
ments: isoelectric PQ, ST and TP segments (λiso), P-waves
(λP), QRS complexes (λQRS), and T-waves (λT). The
corresponding smoothing parameters were roughly set to
λiso = 3, λP = λT = 1, and λQRS = 0 (i.e., no smoothing
for QRS complexes). Concerning harmonic artifacts, we
roughly set ν1 = ν2 = 40. Fig. 2 highlights that the pro-
posed framework can cope with all the different kinds of
noise and artifacts that usually corrupt ECG records, even
without optimization of the smoothing parameters. Note
that the mismatch between q0 and x in Fig. 2 is due to the
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Figure 1. Real ECG (q0, blue) corrupted with additional
baseline wander, muscle and harmonic artifacts (q, red).
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Figure 2. ECG record from Fig. 1 (q0, blue) and recon-
structed version using the proposed framework (x, red).

fact that the original record q0 was not noise free, but ex-
hibited itself some baseline drift and measurement noise,
which have been correctly removed using the framework.

5. Conclusions

In this paper we present a novel framework for ECG
signal preprocessing, which is based on the notion of
quadratic variation reduction. The quadratic variation is
introduced as a measure of variability for sampled signals.
The proposed framework is very general and can cope with
all kinds of noise and artifacts that corrupt the ECG. In par-
ticular, it can effectively handle both transient and persis-
tent noise, and can be applied to entire ECG records as well
as to single waves, like P-waves or T-waves. The frame-
work relies on a single algorithmic structure that can be
easily adapted to cope with different kinds of noise and ar-
tifacts. Results show that it is effective in improving signal
quality, while preserving ECG morphology. Moreover, it
is very fast, even on long recordings, thus being perfectly
suitable for real-time applications and implementation on
devices with reduced computational power, such as hand-
held devices.
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Università Campus Bio-Medico di Roma
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