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Abstract

Introduction: The electrocardiogram (ECG) allows for
interpretation of the electrical activity of the heart. The
information which can be derived from the foetal ECG
(FECG) goes beyond heart rate and heart rate variability.
However morphological analysis of the FECG waveform
is usually not performed in clinical practice.

Methods: A Bayesian Filtering Framework based on an
Extended Kalman Filter (EKF) for extracting the FECG
from a single abdominal channel is described using a
training database of 20, one minute maternal-foetal mix-
tures and evaluated on 200, one minute mixtures. (Data
was generated using the simulator, fecgsyn, used to gen-
erate a subset of the signals of the Physionet Challenge
2013.) A single pass of the EKF (EKFS) was performed
to cancel out the maternal ECG (MECG) in order to build
an average FECG morphology. A dual EKF (EKFD, i.e.
where both the MECG and FECG cycle morphology were
modelled) was then applied to separate the three sources
present in the signal mixture (noise, MECG and FECG). A
normalised root mean square error and absolute QT error
after EKFS and EKFD were calculated.

Results: An SNR improvement of 1.97 dB after EKFS
and 14.14 dB after EKFD on the test set were achieved.
Median absolute error on QT measurement was 17.0 ms
for the EKFS and 4.0 ms for the EKFD.

Conclusion: This work is a proof of concept that the
EKFD allows accurate beat to beat extraction of the FECG
morphology from abdominal recordings.

1. Introduction

The electrocardiogram (ECG) allows for interpretation
of the electrical activity of the heart. The information pro-
vided by the ECG goes beyond heart rate and heart rate
variability. However morphological analysis of the foetal
ECG (FECG) waveform is usually not performed in clin-
ical practice because of technological limitations, as well
as the the lack of agreement in how to interpret the FECG.
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The scalp electrode (usually placed on the foetus’ head)
can only be placed at the very last stage of the pregnancy
(antepartum) and has a small associated risk. It is there-
fore not routinely deployed. Conversely, the non-invasive
foetal ECG (NI-FECQ), uses electrodes on the abdomen,
can theoretically be recorded at earlier stages of the preg-
nancy. However, the NI-FECG always manifests as a mix-
ture of noise, foetal activity and the dominant maternal car-
diac signal. Other methods for continuous foetal monitor-
ing include foetal phonocardiography, Doppler ultrasound,
cardiotocography, foetal magnetocardiography and foetal
pulse oximetry. Thus there exists a range of monitoring
methods and associated signals available for monitoring
the foetus. However capturing useful physiological infor-
mation from these signals still remains a challenge. This is
partly due to the difficulty in extracting the signal of inter-
est but also the lack of adequate algorithms to map features
to clinically useful interventions.

Commercial NI-FECG monitors such as the MERID-
TIAN monitor from MindChild Medical (North Andover,
MA) have proved to be accurate in detecting the foetal
heart rate (FHR) and early works on extracting morpho-
logical information have been published [1,[2]. These re-
cent advances in the field are very exciting but these stud-
ies are still limited in number and population size because
the algorithms for extracting useful FECG are relatively
new. Most commercial algorithms were not specifically
designed to accurately extract the FECG morphology (they
were designed for FHR extraction) and better algorithms
focused on morphological extraction are now necessary.
This was also highlighted during the Physionet/Computing
in Cardiology challenge 2013 [3]] where the QT event was
unsuccessful due to both, (1) the difficulty for obtaining
meaningful reference morphological annotations (QT) on
the FECG data and (2) the scientific challenge in extracting
the morphology of the FECG from abdominal recordings.
Research in developing methods specifically focused at ac-
curate morphological extraction of the NI-FECG is ongo-
ing, but few studies have demonstrated any useful non-
invasive FECG analysis techniques. Recently, we pub-
lished studies to demonstrate accurate QT estimations can
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be made on NI-FECG [2f]. This current work partially aims
at demonstrating that this can be automated. In particular, a
Bayesian filtering framework for accurately extracting the
FECG morphology from a single abdominal channel is de-
scribed and evaluated.

2. Methods

The Kalman Filter (KF) framework using the dynami-
cal Gaussian ECG model, introduced in Sameni et al. [4]]
has been extended here to model both the maternal and
foetal signals jointly. The mathematical formulation is
now briefly presented.

2.1. ECG model

The dynamical model which describes the states used in
the KF was first proposed by McSharry ef al. [5]. The
equations of the model can be discretised by considering a
small sampling period 9:
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where 0, and zj; are the discrete phase and amplitude at
time instant k, Af; , = 0, — & and 7 is a perturbation
term that corresponds to random additive noise, modelling
the error made by substituting the model for a real ECG.
The parameters «y;, b; and &; correspond to the amplitude,
width and position of the Gaussian kernels respectively.
The extended Kalman filter (EKF), which is an adaptation
of the KF for non-linear systems, was then used.

2.2. EKF equations

The ECG template cycles construction and Gaussian fit-
ting were performed as detailed in [6]. We introduce the
state equations for the dual EKF (EKFD) as follows:

9,{“ = (0£ + wf§) mod 27
01 = (07 +w™d) mod 27
N afw A AG?};C
frr1 = fx — 221 )2 O xexp(— 2(bf)2) + 1y,
aw™ A6,

Mpg1 =My — ) 0 Al pexp(——=25) +1

: 5 0 Msaen— )
a{kﬂ :alf,kJrsa,,
bi o1 = b{k + €,
§ k1 = Sip T Ecir

2

54

The corresponding observation equations are:
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where the superscripts f and m stand for foetal and mater-
nal respectively, Af; ,, = 0, — ™ and AO; ;, = 6, — fif;
@y correspond to the observed phases and sy, to the ob-
served amplitude of the ECG; fj, and my corresponds to
the foetal and maternal amplitudes which were considered
as state variables; IV is the number of Gaussian used to
map the ECG cycle. Since we are particularly interested
in morphology changes (parameters such as the QT in-
terval) over time, the Gaussian parameters of the FECG
were allowed to evolve i.e. af k, i, k, §L . were considered
state variables following a random walk with a perturba-
tion term €. However in order to limit computation time,
the Gaussian parameters of the MECG were not consid-
ered as state variables. An additional observation equation
(4" in Equation [3)) was added to act as a virtual observa-
tion of the MECG to help stabilise the filter similar to the
work of Oster ef al. [[7]. The following assumptions were
also made: (1) The FQRS and MQRS locations are known;
(2) Seven Gaussians describe the template ECG cycle.

2.3. Database

Signals were generated using the fecgsyn, NI-FECG
model from Behar ef al. [8]. The open source simulator
was used to generate maternal-foetal ECG mixtures with
realistic amplitudes, morphology, beat-to-beat variability,
heart rate changes, correlated noise and positional (rotation
and translation-related) movements in the foetal and mater-
nal heart due to respiration. A set of 20, 1-min signals were
generated for the training set and 200, 1-min signals were
generated for the test set. Parameters for the model were
randomly sampled from a Gaussian distribution modelling
various physiological parameters (see Table [I), electrode
position was randomly selected from a set of 32 positions
to simulate different views of the electrical cardiac activ-
ity. A set of 9 vectocardiograms with associated Gaussian
parameters was available in fecgsyn. The first four (1-4)
were used for generating the training set and the last five
(5-9) were used for generating the test set data in order to
ensure that the beat morphology was different in training
and test.

2.4. Protocol

Figure [I] presents the block diagram of the algorithm
denoted EKFD; (1) one abdominal ECG channel is pre-
filtered (pass band [0.7 100] Hz); (2) the single EKF



Table 1. Parameters for the abdominal ECG simulator.

Params Definition 95% CI
MRES maternal breathing rate [0.2 0.3]Hz
FRES foetal breathing rate [0.7983 0.9533] Hz
FHR foetal mean heart rate [120 160] bpm
MHR maternal mean heart rate [70 110] bpm
SNRmn signal to noise ratio (maternal to noise) [6 18]dB
SNRfm  signal to noise ratio (foetal to maternal) [-15 -5]dB
One abdominal - FECG& MECG
ECG channel Prefiltering EKFS templates
EKFD
Scoring < - <—FECGl
system < Postfiltering . MECG

Figure 1. Block diagram of algorithm EKFD.

(EKFS [4]) was applied in order to remove the MECG
contribution to the mixture; (3) Based on the residual
of the EKFS step the template FECG was built; (4) the
EKFD was applied to separate the three components of
the mixture MECG, FECG and noise; (5) a postfilter-
ing step (pass band [0.7 100] Hz) was applied, (6) fi-
nally the signal to noise ratio (SNR) was computed. The
SNR, in decibels (dB), between a reference r and an ex-
tracted signal f with K samples was defined as: SNR =

20 - log(\/Zfil r2) S K (fi = r5)?). The first and last
five seconds of the records were not included in the SNR
evaluation to account for border effects.

In addition, benchmarking was performed against the
EKEFS i.e. taking the residual of the first EKF pass as be-
ing the FECG. Benchmarking was also performed against
EKFSS which corresponds to two single pass of EKF, one
for removing the MECG and taking the residual as being
the FECG and another single pass on the FECG residual
in order to clean the signal. Finally benchmarking was ad-
ditionally performed against the EKF model introduced in
Niknazar et al. 9] (denoted EKFN in this article).

A random search [[10] was performed on the training set
in order to optimise the values of the entries of the observa-
tion and process noise covariance matrices. One hundred
random search iterations were performed for the EKFD (10
free parameters), 90 random iteration for the EKFN (nine
free parameters) and 50 for the EKFSS (five free parame-
ters). Mean and median SNR across all training and test
records were reported for the optimised parameters.

In addition to the SNR computation, QT measurement
was performed using ecgpuwave [11]] for the EKFS, EKFN
and EKFD. ecgpuwave was run on the 1 min segment and
QT intervals extracted from the interval 5-55 sec were kept
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Figure 2. From top to bottom: abdominal mixture, EKFD
pass on top of the true FECG.

Table 2. Results. EKFS: single EKF extracted ECG, EK-
FSS: ECG extracted after a second pass of EKFS, EKFD:
dual EKF. M: maternal, F: foetal. SNR is in decibels.

Train Test
Params SNR (mean) SNR (med) SNR (mean) SNR (med)
EKFS-M 14.64 14.86 16.53 16.70
EKFN-M 18.89 18.74 16.28 15.98
EKFD-M 16.91 16.56 14.96 14.51
EKFS-F 1.50 2.95 1.32 1.97
EKFSS-F 8.86 9.42 7.74 8.28
EKFN-F 14.96 15.47 13.00 13.01
EKFD-F 15.06 16.43 13.71 14.14

(to account for possible edge effects). Since ecgpuwave
was not designed for foetal data and is imperfect, records
with at least three successful measures on the reference
FECG and on EKFD and EKFS were kept. For each filter-
ing method, the QT interval estimate was taken to be the
median of the individual QT measurements on all beats in
the 50 sec interval taken into account in the recording.

3. Results

Table [2] presents the quantitative results of the analysis
and Figure [2] gives a qualitative example of the algorithm
performances. The EKFD SNR on the test set was 14.14
dB against 1.97 dB for the EKFS, 8.28 dB for the EKFSS
and 13.01 dB for the EKFN.

A QT measure could be extracted from a total of 196
files of the test set on the reference FECG, EKFS, EKFN
and EKFD. QT estimates from the EKFD and EKFS were
compared to the true QT (Figure [3). Mean and median
absolute errors were (19.77 ms, 17.0 ms) for the EKFS,
(8.46 ms, 4.0 ms) for EKFN and (7.58 ms, 4.0 ms) for
EKFD. The EKFD had a smaller bias that the EKFS and
EKFN with a slope closer to unity, an offset closer to zero
and a higher goodness of fit (R? = 0.64).
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Figure 3. From left to right: QT estimated from EKFS, EKFN and EKFD processed FECG compared to the model’s QT
(red crosses). Also shown is the linear regression (blue line) and R? (coefficient of determination or goodness of fit).

4. Discussion and conclusion

The EKFD method relies on accurate and precise FQRS
and MQRS detection using usch methods as the ones eval-
uated in Behar et al. [6},/12]. The residual signal from any
of these methods can then be used instead of the single-
pass EKF in order to build the template FECG.

Ultimately the ability of an algorithm to extract an ac-
curate FECG morphology should be assessed in terms
of clinically significant parameters such as QT segment
length and ST level. This is because the RMS based sim-
ilarity measure is weighted towards large amplitude fea-
tures (like the QRS complex) but can provides little insight
into subtle but clinically significant changes.

The EKFD performed better than the EKFS, EKFSS and
EKFN and allowed more accurate QT measurement than
the EKFS and EKFN. Although the improvements over
EKFN were modest, the lower bias may indicate an even
higher improvement on pathological data. We also note
that the EKFN resulted in an NI-FECG with a baseline
drift, which is an unexpected behaviour which might re-
sult in instabilities and errors in ST analysis. By adding the
additional observation equation and considering the Gaus-
sian parameters as state variables, this phenomena was not
observed in EKFD, and the result was a more stable set
of equations. Future work includes evaluating the EKFD
algorithm on real data with clinical labels.
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