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Abstract

Dysfunctions of the autonomic nervous system in crit-
ically ill patients with Acute Brain Injury (ABI) lead to
changes in Heart Rate Variability (HRV) which appear to
be particularly marked in patients subsequently declared
in Brain Death (BD). HRV series are non-stationary, ex-
hibit long memory in the mean and time-varying condi-
tional variance (volatility), characteristics that are well
modeled by AutoRegressive Fractionally Integrated Mov-
ing Average (ARFIMA) models with Generalized AutoRe-
gressive Conditional Heteroscedastic (GARCH) errors.
The long memory is estimated by the parameter d of the
ARFIMA-GARCH model, whilst the time-varying condi-
tional variance parameters, u and v characterize, respec-
tively, the short-range and the persistence in the condi-
tional variance. In this work, the ARFIMA-GARCH ap-
proach is applied to HRV series of 15 pediatric patients
with ABI admitted in a pediatric intensive care unit, 5 of
which has BD confirmed and 9 patients survived. The long
memory and time-varying conditional variance parame-
ters estimated by ARFIMA-GARCH modeling significantly
differ between groups and seem able to contribute to char-
acterize disease severity in children with ABI.

1. Introduction

Dysfunctions of the autonomic nervous system in crit-
ically ill patients with Acute Brain Injury (ABI) lead to
changes in Heart Rate Variability (HRV) which appear to
be particularly marked in patients subsequently declared
in Brain Death (BD). Previous studies on cardiovascular
series variability indicate that the derived indexes can not
only provide a complementary tool for time course predic-
tion and prognostic in critical illness, but also lead to early
reliable predictors of BD, contributing for the efficiency
of organ transplantation programs [1, 2]. It is well known
that reduced HRV, assessed in time, frequency and com-

plexity, is a risk index after trauma for both morbidity and
mortality and an early predictor of BD. Although some au-
thors have proposed HRV as an auxiliary tool in trauma
triage, it is neither used in the clinical practice for ABI
patients, nor considered in the guidelines for BD determi-
nation [2–4]. HRV series are non-stationary, exhibit long
memory in the mean and time-varying conditional vari-
ance, characteristics that are well modeled by AutoRegres-
sive Fractionally Integrated Moving Average (ARFIMA)
models with Generalized AutoRegressive Conditional Het-
eroscedastic (GARCH) errors. The long memory is esti-
mated by the parameter d of the ARFIMA-GARCH model,
whilst the time-varying conditional variance parameters,
u and v characterize the short-range and the persistence,
respectively, in the conditional variance. Previous stud-
ies [5] indicate that for normal subjects these parameters
show circadian variation: the parameter d has lowest val-
ues, 0 < d < 0.5, during the night period with mean (std)
0.35 (0.05) and the parameters u, v present, for the same
period, values of 0.17 (0.06) and 0.64 (0.05), respectively,
indicating persistence in the conditional volatility. This
work applies the ARFIMA-GARCH approach to HRV se-
ries of 15 pediatric patients with ABI admitted in a pe-
diatric intensive care unit with the aim of contributing to
the characterization of the HRV in these patients and early
brain death assessment.

2. ARFIMA-GARCH models

ARFIMA(p, d, 0)-GARCH(1, 1) models are defined as
follows

φ(B)(1−B)dxt = εt, (1)
εt = σtzt, σ2

t = w + vσ2
t−1 + uε2t−1 (2)

where B is the backward-shift operator, (1 − B)d =
∞∑
k=0

(
d
k

)
(−1)kBk is the fractional difference operator

[5], d ∈ R, p ∈ N, φ(B) = 1 − φ1B − ... − φpB
p is
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the autoregressive polynomial (in B), w > 0, v, u ≥ 0,
u + v < 1, and zt are independent and identically dis-
tributed random variables with zero mean and unit vari-
ance.

Equation (1) describes the conditional mean of the pro-
cess with parameter d determining the long-term behaviour
in the mean, whereas p and the coefficients in φ(B) allow
for the modeling of the processes short-range properties.
The model is stationary for −0.5 < d < 0.5 but mean
reverting for 0.5 ≤ d < 1. The long memory parameter
is related to the Hurst coefficient, H = d + 0.5, to the
fractal dimension, D = 2 − H and to the slope of the
(generalized) spectral density in the low frequency range
by α = 2d, [5, 6].

Equation (2) describes the dynamics of the conditional
variance (volatility) of the process: σ2

t is dependent on
its own lagged values and on the squared residuals of
the mean equation. The parameter u characterizes the
short-range properties in the volatility and the parameter v
characterizes the persistence in the volatility. This model
encompasses the classic short-memory AR(p) model, for
d = u = v = 0, the long memory ARFIMA(p, d, 0)
model, for u = v = 0 and the ARFIMA(p, d, 0)-ARCH(1)
model, for v = 0.

Given a time series x1, . . . , xn, to estimate the parame-
ters of an ARFIMA(p, d, 0)-GARCH(P,Q), P,Q ∈ {0, 1}
model proceed as follows, [5]:
1. estimate d using the semi-parametric local Whittle esti-
mator;
2. define the filtered data yt = (1−B)dxt;
3. estimate the AR(p)-GARCH(P,Q) parameters in the
filtered data yt.

In step 3, AR(p)-GARCH(P,Q) parameters are esti-
mated by maximum likelihood with initial parameters ob-
tained by least squares and the order p of the AR com-
ponent determined by the Akaike Information Criterion
(AIC). The conditional heteroscedasticity in the series is
assessed by the Ljung-Box test in the squared residuals,
[7]. In the presence of heteroscedasticity and to keep
the model parsimony an AR(p)-GARCH(1,0) or AR(p)-
ARCH(1) model is first considered, in this work. If the
series does not present heteroscedasticity then the final
model is an ARFIMA(p, d, 0).

As usual only models for which the residuals are not
correlated, checked by the Ljung-Box test for the residuals,
are considered valid models.

3. Data and pre-processing

This study considers 15 pediatric patients with acute
brain injury admitted in the Pediatric Intensive Care Unit
(PICU) of Centro Hospitalar S. João, Porto, Portugal. The
patients are part of a database collected at PICU between
2006 and 2011, in a project approved by the respective

ethic commission and by the Portuguese data protection
authority. Parents gave signed informed consent for in-
clusion of their children in the database. The cases were
selected by age criteria (11-14 years old) and by the avail-
ability of a high resolution 12-lead ECG Holter recording
with a minimum duration of 3 hours. Brain death has been
confirmed for 5 patients (D1-2, D4-6) during the recording
or at a latter moment by the usual protocol. One patient
died during the recording (also included in the BD group
as D3), while the remaining 9 patients Survived (S1-S9).
ECG leads I, III, V1-V6 were automatically delineated us-
ing the wavelet transform based system described in [8]
and the R peak taken as the median mark of the single lead.
The beat-to-beat RR series obtained from these marks were
then filtered for ectopic and artifact correction.

4. HRV modeling

Given the long HRV record the procedure is as fol-
lows. First a selective adaptive segmentation decomposes
the long record into short excerpts of variable length (min-
imum of 400 beats and maximum of 3000 beats) by find-
ing structural breaks in the mean persistence using the
ARFIMA model, equation (1), as described in [5]. PICU
HRV data often present severe outliers that are not re-
moved by the usual preprocessing and hinder the model-
ing of the segments. Consequently segments containing
RR out of the band given by the median filter on a 100-
points window ±2 RR standard deviation are not admissi-
ble for the subsequent analysis. For each admissible RR
segment: test the null hypothesis that there are unit roots
(Augmented-Dickey-Fuller test, [9]) in which case, d ≥ 1,
and a stationary or mean reverting model is estimated for
the RR increments or first differenced series, ∆RR. Long-
range correlations and conditional volatility are then as-
sessed in each segment by the ARFIMA-GARCH model-
ing as described in section 2.

The approach is illustrated in figure 1 for an excerpt of
7 segments of patient S7 recording (with the break points
identified by the vertical lines), along with the estimated
parameters, d, u, v, the indication of the type of model
for each segment, the ARFIMA model residuals and the
conditional standard deviation. The figure illustrates how
distinct RR segments are modeled by different models and
how the estimated parameters vary in time, e.g. for the first
segment d = 0 (meaning no long memory) while for the
remaining segments d = 0.40, 0.22, 1, 1.23, 0.31, 0.79
indicating strong persistence in the mean. Regarding the
conditional volatility, the first segment shows some weak
non-persistent volatility (u = 0.14, v = 0) and absence of
conditional volatility in segments 2, 3 and 4 (u = v = 0).
Finally for segments 5, 6 and 7 u = 0.16, 0.09, 0.12 and
v = 0.84, 0.88, 0.81, respectively, indicating strong per-
sistence in conditional volatility in accordance with the
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volatility clusters in the ARFIMA residuals. The changes
in u and v are well represented in the lower panels which
illustrate how the fitted model captures the increased clus-
tered variability in the last segment.
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Figure 1. Example of ARFIMA-GARCH modeling for
patient S7. Represented segments delimited by vertical
lines with background increasing grey scale indicating
chosen model: ARFIMA, ARFIMA-ARCH, ARFIMA-
GARCH.

5. Results and discussion

The methodology described and illustrated in section
4 is applied to the 15 patients and two key results are
analysed: the type of model, ARFIMA, ARFIMA-ARCH,
ARFIMA-GARCH predominating in each group and the
distribution of the parameters.

Figures 2 and 3 summarize the results only for valid seg-
ments for which an adequate model was found. The results
are normalized by the number of beats in the segment so
that the different segment lengths are accounted for. The
percentage of each type of model per patient is represented
in the figure 2 with the grey scale indicating models of in-
creasing complexity. The darkest grey tone indicates that
neither ARCH nor GARCH was able to model the hete-
rocedasticity in the ARFIMA residuals. The heterocedas-
ticity is equally predominant in both groups but a signif-
icantly (5%) lower percentage of beats required v > 0
(ARFIMA-GARCH model) in the D group (10% of all
beats in group) when compared with S group (40%). This
indicates a different behavior of the conditional variance in
the groups.

Regarding the distribution of the parameters, figure 3 in-
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Figure 2. Distribution of model types (%) per patient; S
and D stand for global results of all patients in the group.

dicates that it is also different between the groups. For d,
figure 3(a) the two groups were found to have statistical
differences (5% MannWhitney U test), with means (stan-
dard deviation) of respectively 0.44 (0.25) and 0.84 (0.25).
Typical d values for the S group are lower than 0.8; for
group D, in 5 (out of 6) patients, 0.5 ≤ d < 1 (shaded
in figure and corresponding to mean reverting ARFIMA
models) for the 50% of the beats lying between the first
and third quartiles. Higher d values for patient D3 may
reflect the fact that he entered cardiac arrest without BD
confirmation.
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(a)Estimated long memory d
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(b)Estimated u
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Figure 3. Boxplots for d (a), u (b) and v (c) per patient; S,
D - global results of all patients in the group.

In figure 3(b) and 3(c) the shaded areas represent typ-
ical values found for group D with limits computed as
mean+[−]3std for u[v] over normal patients during sleep
found in [5]. The values for u are higher for D group, with
a mean of 0.31 (0.13) than for S group with a mean of 0.14
(0.10) while v is higher for the S group, 0.38 (0.14) than
for D group 0.12 (0.08), with a percentage of 85% of null
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values. As a matter of fact, for 4 out of 6 D cases, and
none for S group, less than 25% of the beats required an
ARFIMA-GARCH model (v > 0). The distribution of u
and v are statistically different at 5% and 0.5% levels, re-
spectively. Clearly, the D group presents a higher (lower)
percentage of ARFIMA-GARCH segments with u > 0.4
(v < 0.5) (shaded areas), indicating absence of persistence
in the volatility. Recall that for this group D the fraction of
segments requiring the ARFIMA-GARCH model is lower
reflecting the different variance behavior.

6. Conclusions

The long memory and time-varying conditional vari-
ance parameters estimated by ARFIMA-GARCH model-
ing seem able to contribute to characterize disease severity
in ABI children. For non survivors (D group) the values of
0.5 ≤ d < 1 indicate less stability in mean HRV. Addition-
ally lower persistence in volatility was noticed, with 90%
of beats modeled with non-persistent (v = 0) volatility.

The results indicate that persistence in volatility may be
used to discriminate between S and D and that the potential
of parameter v as early indicator of brain death should be
explored.
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