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Abstract

The use of Implantable Cardioverter Defibrillators
(ICD) for cardiac arrhythmia treatment implies a search
for efficiency in terms of discrimination quality and com-
putational complexity, given that improved efficiency will
automatically turn into more effective therapy and longer
battery lifetime. In this work, we applied evolutionary
computation to create classifiers capable of discriminat-
ing between ventricular and supraventricular tachycardia
(VT/SVT) in episodes registered by ICDs. Evolutionary
computation comprises several paradigms emulating natu-
ral mechanisms for solving a problem, all of them charac-
terized by a population of individuals (possible solutions)
which evolve generation after generation to provide fitter
solutions. Genetic programming was the paradigm chosen
here because its solutions, coded as decision trees, can be
both computationally simple and clinically interpretable.

For the experiments, we considered electrograms
(EGM) from episodes registered by ICDs in spon-
taneous/induced tachycardia, previously classified as
VT/SVT by clinical experts from several Spanish health-
care centers. Training data were 38 real-valued samples,
arranged as the concatenation of two beat segments: a si-
nus rhythm template immediately previous to the arrhyth-
mic episode (basal reference), and the arrhythmic episode
template. Several low complexity trees provided low er-
ror rates and allowed physiological interpretation. The
best tree yielded an error rate of 1.8%, with both sensi-
tivity and specificity above 98%. This solution compares
two samples from the end of the arrhythmic pulse with an-
other two samples from the sinus rhythm, pointing out to a
relevant discrimination role of the lasting EGM.

1. Introduction

Since they were first introduced as a way of treatment
for malignant arrhythmias, implantable cardioverter de-
fibrillators (ICD) have undergone constant evolution, ei-

ther by the introduction of new functionalities (from first-
generation non-programmable ICDs to fourth-generation
bicameral devices) or by the improvement of their discrim-
ination criteria. There are in the literature several com-
plex discrimination methods, such as the Prediction Error
Criterion [1], the Correlation Waveform Analysis [2], the
QRS Width Criterion [3], or the spectral analysis of the
QRS complex [4]. Though elaborated methods usually
provide low error rates, they force the device to perform
complex calculations usually lacking physiological mean-
ing. In this paper, we propose the use of evolutionary com-
putation to design classifiers driven by data (voltages asso-
ciated to beat segments registered by ICDs). The goal is
to find computationally simple and physiologically mean-
ingful discrimination criteria which may help the special-
ists to discern between ventricular tachycardia (VT) and
supraventricular tachycardia (SVT).

The most natural way to search for automatic problem
solvers seems to be the use of mechanisms similar to the
most powerful problem solvers found in nature, that is, the
human brain and the evolutionary process (which created
human brains) [5]. Evolutionary computing methods ap-
pear as a machine learning approach to the second option.
Evolutionary computation [5] is an artificial intelligence
discipline emulating natural mechanisms to achieve the so-
lution of a problem. Despite evolutionary computation is
an umbrella term including different paradigms, the whole
family can be characterized by a population consisting of
individuals (possible solutions) which evolve generation
after generation to provide better solutions. In this work,
we have considered the paradigm of genetic programming
(GP) [6] because it can yield solutions both computation-
ally simple and clinically interpretable.

Solutions in GP are coded as tree-like structures repre-
senting syntactic expressions,: operators are the nodes of
the tree, data features and constants make for leaves, and
branches connecting nodes and leaves determine the op-
erator composition. The natural mechanisms applied on
individuals of one generation (so-called parents) to pro-
vide next generation are inspired in biological processes,
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thus receiving the names of their biological analogues,
namely, crossover and mutation. The crossover mecha-
nism consists basically on the sub-trees swapping between
two parents, while mutation implies a random change on
just one individual. Remarkably, mutations should occur
with lower probability than crossover, in order to properly
emulate the biological process. The population evolves
from one generation to the next one by evaluating a cer-
tain ‘fitness’ function on the individuals and favoring the
best-performing ones.

The remaining of this paper is structured as follows.
Section 2 details the dataset and presents the GP tool used
in this work. Section 3 reports the results, and Section 4
states the conclusions.

2. Materials and Methods

We considered electrograms (EGM) from episodes reg-
istered by ICDs (sampling rate 128 Hz, 8-bit precision)
in spontaneous and induced tachycardia [7, 8], collected
in six spanish healthcare centers. The EGM source was
HVA/HVB for all episodes, which were classified as VT
or SVT by clinical experts. Features from every episode
consisted of 38 real-valued samples associated to electric
voltages in milivolts (mV). These samples were arranged
as the concatenation of two beat segments, namely, a si-
nus rhythm template immediately previous to the arrhyth-
mic episode (basal reference) and the arrhythmic episode
template. Every beat segment was composed of 19 sam-
ples. Episodes were split into two independent datasets:
one dataset to design the classifier (train dataset) and the
another one to provide its generalization behaviour (test
dataset). Figure 1 depicts some statistics for the feature
space, taking into account the class (VT/SVT) and the
dataset (train/test).

Attending to the usual criteria for arrhythmia discrimi-
nation in ICDs, the approach of this work can be consid-
ered as based on the association-dissotiation of atrium and
ventricle (as opposed to those based on the morphological
analysis, or on the cycle length).

The training dataset was composed by 38 SVT and 68
VT episodes from 16 patients with ICD (Medtronic Micro
Jewel, models 7218, 7219, 7221, 7223 and 7271). The
origin of the SVT episodes included effort tests, both post-
implant tests and tracking checks carried out from one to
three months after the intervention. VTs were associated
both to spontaneous and induced episodes. The test dataset
(used just for evaluation) was composed by spontaneous
episodes (284 SVT and 1057 VT) from 28 patients with
bicameral ICD (Medtronic Micro Jewel, model 7271).

We selected the GPLAB tool [9], a GP framework de-
signed for Matlab, to perform our experiments. After ex-
ploring different values for crossover and mutation rates,
we decided to use the default GPLAB configuration of

adaptive operator rates, as exposed in [10] for genetic algo-
rithms. The fitness function was the absolute error between
the output provided by the tree and the desired output (true
class). Desired outputs were coded as ‘1’ (SVT) and ‘0’
(VT). A threshold of ‘0.5’ on the output provided by the
tree was considered for classification purposes.

The evolutionary process was explored through 44 ex-
periments, where the main differences were the set of op-
erators used as tree nodes and the constraints for the leaves.
Regarding the operators, different combinations of log-
ical (e.g., and, or, not), arithmetical (e.g., plus, minus,
times), comparison (e.g., equal, greater than, lower than)
and trigonometrical (e.g, sine, cosine) functions where ap-
plied. As for the leaves, certain constants (zero, random
number) were allowed, in addition to the 38 features defin-
ing the episode. A population size of 100 individuals was
considered in all cases, with the maximum number of gen-
erations set to 50. For each experiment, 50 runs with dif-
ferent initial populations were performed.

3. Results

We present in this section the results obtained when ap-
plying GP to find criteria to discern between VT and SVT
episodes, in order to be employed in embedded devices.
Experiments provided decision trees with different com-
putational complexity (i.e., function evaluations, directly
related to the number of nodes) and error rates. Thus, error
rates in the test dataset ranged from values around 2% to
more than 35%. Experiments considering trigonometrical
and logical functions provided the worst results. The use
of constants in the leaf nodes did not provide a significant
worsening neither improvement in the error rate.

Histograms in Figure 2 illustrate the variety of results
provided by GP on the 50 runs when using two fam-
ilies of operators as nodes: Fam-A (operators ‘equal’,
‘greater than’ and ‘times’), which provided fairly reason-
able results; and Fam-B, which provided the best results by
completing the set of previous operators (‘equal’, ‘greater
than’, ‘times’, ‘non equal’, ‘lower than’, ‘lower or equal’,
‘greater or equal’,‘plus’, ‘minus’). Performance measure-
ments used for comparison were sensitivity, specificity and
error rate, all of them on the test dataset. Results with the
remaining families of nodes are worse or similar to those
presented in Figure 2.

The best solution (tree) found is shown in Figure 3 (a)
and corresponds to Fam-B. This simple tree is constituted
just for three nodes (‘times’,‘minus’ and ‘lower than’) and
four leaves (two samples from the sinus beat and another
two ones from the arrhythmic beat). Specifically, it com-
pares the difference of two voltages extracted from the end
of the arrhythmic beat (X33 − X22) with the product of
two voltages extracted from the beginning of the sinus beat
(X12∗X3). The error rate provided by this tree was 4.7% in
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(a) (b) (c) (d)

Figure 1. Representation of the highest/median/lowest voltage associated to the features of every class (VT/SVT) and
dataset (train/test): (a) SVT-train; (b) VT-train; (c) SVT-test; (d) VT-test. The abscissa axis corresponds to the sample
(feature) number, while the ordinate represents voltage in mV units. Median voltages are depicted in red dotted lines, while
highest and lowest voltages are defined by blue lines.

train and 1.8% in test; specificity and sensitivity on the test
dataset were 98.20% and 98.24%, respectively. It seems
reasonable to state that this result is not due to overfitting,
since the error rate for training is higher that for testing.
For a better solution interpretation, Figure 3 (b) depicts
two waveforms, one associated to VT and the another one
to SVT. Voltages in this figure correspond to the median
value for each feature and type of tachycardia. The anal-
ysis of this simple solution is in accordance with previ-
ous studies, which had shown the importance of the initial
segment of the EGM for discerning between VT and SVT
[7, 8], but no other criteria had been focused on the final
segment of the rhythm.

Other solutions providing test error rates around 5% are
also composed of simple operations, easily implemented
by visual methods (e.g., comparison and subtraction). This
shows that the interpretability of the result is not limited to
the specific case presented in previous figures, but occurs
commonly. Figure 4 corresponds to another tree in Fam-B
providing an error rate of 4.5%. Note that this classifier
also compares two values: one voltage of the sinus rhythm
template and the difference of two voltages in the arrhyth-
mic template. Referring again to Figure 3 (b), we observe
that this solution compares the first part of the arrythmic
episode with the end of the sinus rhythm.

Individuals with an error rate around 10% seem to clas-
sify incorrectly a common subset of SVT episodes. It
is possible that this subset of episodes share some com-
mon characteristics that differentiate them from other SVT
episodes. Specifically, it is suggested that this subset could
correspond to branch block episodes, characterized by a
wider QRS-complex, what usually leads to misclassifica-
tion in some of the most used discriminators too.

To get an idea of the quality of the performance provided
by the GP scheme, a variety of well-known machine learn-
ing techniques was considered for comparison: k-Nearest
Neighbours (k-NN), Linear Logistic Model, Multi-Layer
Perceptron (MLP), and Support Vector Machines (SVM)
with different kernels (gaussian and polynomial). These
classifiers were designed using the Weka sofware (avail-

Figure 2. Histograms of three performance measurements
(sensitivity, specificity and error rate) for two families of
experiments on 50 runs: Fam-A (upper panel) and Fam-B
(lower panel).

able at http://www.cs.waikato.ac.nz/ml/weka) and the
datasets described in Section 2. The test error rates pro-
vided by these approaches ranged from 2.6%−MLP to
11.8% − k-NN (SVM: 3.1% ; Linear Logistic Model:
6.8%). Note that the best results provided by an adequate
GP technique are comparable to the best results provided
by other machine learning approaches.

4. Discussion and Conclusions

This article shows that the use of evolutionary comput-
ing techniques may be a valid option when searching for
simple and physiologically meaningful criteria for arrhyth-
mia discrimination. It has also provided some examples
of classifiers yielding error rates comparable to those ob-
tained by more complex procedures in the literature (MLP
or SVM, among others), with the advantage of physiolog-
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Figure 3. Best tree found, confronted with related
samples: (a) Decision tree standing for the formula
“SVT := (X33-X22)<(X12*X3)”; (b) Median value for
samples of the SVT (dotted blue) and VT (red) templates.

Figure 4. Decision tree standing for the formula
“SVT := (X21-X33)>X13”. Error rate of 4.5%.

ical interpretability.
Though the training set used in this work have data col-

lected from induced episodes, the performance turned out
to be quite good even when tested with just spontaneous
episodes. The best classifier found in this work yielded
an error rate of 1.8%, with both sensitivity and specificity
greater than 98%, thus obtaining a very balanced discrimi-
nation. Experiments showed that, in general, the GP tech-
nique was able to provide a successful generalization with
interpretability when operators are adequate. On the other
hand, the intuition that a set of misclassified SVT episodes
both with the GP solutions and with other criteria are asso-
ciated to branch blocking paves the way for a new research
line determining the differences between SVTs with and
without branch blocking.

Finally, the qualitative analyses carried out on some GP
solutions show that the information for arrhythmia dis-
crimination is not only at the beginning of the ventricular
activation, but also at the final segment of the sinus rhythm.
This result had not been previously indicated in the litera-
ture before, and we hope it will open new ways for further
improvement of arrhythmia discrimination criteria.
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