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Abstract

The Physionet/CinC 2012 challenge focused on improv-
ing patient specific mortality predictions in the intensive
care unit. While most of the focus in the challenge was on
applying sophisticated machine learning algorithms, little
attention was paid to the preprocessing performed on the
data a priori. We compare four standard pre-processing
methods with a novel Box-Cox outlier rejection technique
and analyze their effect on machine learning classifiers for
predicting the mortality of ICU patients. The best ma-
chine learning model utilized the proposed preprocessing
method and achieved an AUROC of 0.848. In general, the
AUROC of models using our novel preprocessing method
increased, and this increase was as much as 0.02 in some
cases. Furthermore, the use of preprocessing improved the
performance of regression models to a higher level than
that of non-linear techniques such as random forests. We
demonstrate that proper preprocessing of the data prior to
use in a prognostic model can significantly improve per-
formance. This improvement can be even greater than that
provided by more complex non-linear machine learning al-
gorithms.

1. Introduction

With the burgeoning supply of medical data, prognos-
tic systems are becoming increasingly complex and more
accurate. This is especially so in the intensive care unit
(ICU), which hosts both the most severely ill and the most
heavily monitored patients. Prominent examples of ICU
prognostic systems include the APACHE IV [1], SAPS III
[2,3], MPM III [4], and OASIS [5] models, which predict
patient mortality given their physiology and demograph-
ics. These models are primarily used for risk-adjustment
as they do not have sufficient calibration for patient spe-
cific predictions. However, there is increasing opportu-
nity to leverage large datasets in order to provide patient
specific predictions. The aim of the Physionet/CinC 2012
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challenge was to spurn innovation in this field [6].

Much of the competition entries focused on training ma-
chine learning algorithms which were much more sophis-
ticated than prior work. However, an often overlooked as-
pect are the artefacts present in the data. Due to the chaotic
nature of the ICU, data sourced from monitors is often cor-
rupted by noise. This noise can reduce the performance
of a predictive model as the underlying machine learning
methods will have optimized parameters based upon in-
correct information. For these reasons data preprocess-
ing to remove artefacts is of the utmost importance, yet
it has received relatively little exposition in previous pub-
lications. Furthermore, there is no systematic analysis of
performance of machine learning methods under various
levels of data preprocessing. Here we compare three data
preprocessing methods across four widely employed ma-
chine learning techniques. The data preprocessing meth-
ods include no data preprocessing, utilizing domain knowl-
edge, and a novel Box-Cox based iterative outlier rejection
method. The preprocessing methods are evaluated when
used in conjunction with a Random Forest (RF), Support
Vector Machine (SVM), Regularized Logistic Regression
(RLR), and a Regularized Logistic Regression with addi-
tional square terms (RLR?).

2. Methods

The data utilized was prepared by the challenge or-
ganizers and was originally sourced from the MIMIC II
database, a freely available public access dataset hosted
on Physionet containing data for ICU admissions to the
Beth Israel tertiary care hospital [6,7]. Data for 4,000 pa-
tients who stayed at least 48 hours in the ICU were ex-
tracted from the dataset. The outcome of interest was in-
hospital mortality. Variables included patient age, gender,
height, weight, ICU type, and 37 time-stamped physiolog-
ical measurements (e.g. heart rate, systolic blood pres-
sure). Further to this, data for an additional 4,000 patients
were extracted and provided online, but the outcomes for
this subset were kept hidden. This allowed for unbiased
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evaluation of model performance by the challenge orga-
nizers. The data was first converted from timestamped
measurements into features usable in a supervised classifi-
cation setting. The overall development process involved:
1) (optionally) preprocessing the data by aggregating all
time-stamped measurements across all patients, 2) extract-
ing features for use in the machine learning method, 3)
(optionally) further preprocessing the data (using the same
techniques as before), and finally 4) training and validating
the models.

2.1. Preprocessing

Three pre-processing methods were evaluated: no pre-
processing, domain knowledge, and the proposed iterative
Box-Cox outlier rejection technique (BCOR). Note that
all these preprocessing methods focused on removing out-
liers. When a preprocessing method detected an outlier, its
value was set to missing, and would later be replaced by
mean imputed values.

No pre-processing involved using the features directly
extracted from the data, but it is worth noting that these
features were still univariately standardized to have zero
mean and unit variance (with normalization coefficients
calculated from only the training set). This is to allow for
use of scale sensitive methods, such as an SVM.

Domain knowledge pre-processing involved first cor-
recting human transcription errors (such as recording tem-
perature in degrees Farenheit rather than Celsius), then re-
moving values which were unphysiological (by applying
upper and lower bounds). For features where limits were
not obvious (e.g. heavy tailed distributions like urine out-
put), no thresholding was applied.

BCOR proceeds iteratively and univariately. Each fea-
ture is Box-Cox transformed to increase its similarity to a
normal distribution. Thresholds are then determined using
a critical value at the 0.01 significance level (o« = 0.01)
with application of the Bonferroni correction. Specifically,
given a data vector x, we determine from the data a value
A which maximizes the profile log-likelihood [8] of trans-
formed data x’ = L}\*l being sourced from a normal dis-
tribution. For A = 0 the transformation takes the form
x’ = log(x). Thresholds are generated from the trans-
formed dataset x’ as:

8o (2029, @~ Nui).six)) (1)

. where u(-) calculates the mean, s(-) calculates the
standard deviation, ®~1(-) is the inverse cumulative dis-
tribution function for a normal distribution, and N is the
number of data points observed. Data not residing within
the thresholds were replaced with a missing value indi-
cator. This removes values which, given the number of
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samples, are extremely unlikely to have been drawn from
the overall distribution. This process is repeated until no
values are removed, and all transformation parameters and
associated thresholds are saved for later application to the
validation sets. Data after the BCOR process remains in
the transformed space, and thus is more Gaussian than the
original data. Binary and ordinal variables are not prepro-
cessed in this manner.

2.2. Feature extraction

For the temporally evolving measurements, in general,
the standard deviation, first, last, highest, lowest, and me-
dian of all the measured values were used as features.
These measures are gross aggregates of each patient’s vi-
tal sign trajectories, and have been shown to have surpris-
ing performance despite their simplicity [?]. Traditionally,
only the highest and lowest values are used in severity scor-
ing systems [1-4]. Variables which were not processed
in this way include urine output and mechanical ventila-
tion. For urine output, the cumulative sum over all values
was used. For mechanical ventilation three flags were cre-
ated: the first indicated whether the patient was ventilated
within the first 4 hours of ICU admission, the second in-
dicated whether the patient was ventilated between hours
44 and 48, and the final flag indicated whether the patient
was ever mechanically ventilated. For static measurements
(such as gender), the admission value was used. The ‘ICU-
type’ variable was converted into four indicator variables
for each ICU type. This resulted in a a design matrix with
4,000 observations and 198 features.

2.3.  Futher processing

The design matrix was then handled in one of four ways.
The first involved no additional processing. The second in-
volved applying the domain knowledge step. The third in-
volved applying the BCOR step to the design matrix. This
allows for quantification of preprocessing both before and
after synthesis of the data into summary features. Finally,
the above three were repeated when missing value indi-
cator features were added to the design matrix. Missing
value indicators were created only if a feature had missing
values, and contained a value of ‘1’ if a feature value was
missing (and O otherwise).

2.4. Model development

Predictive models were then developed using 4-fold
cross-validation, and performance measures are calculated
across the held-out folds. Relevant hyperparameters were
learnt using a further internal cross-validation. All data
was standardized to the training set to prevent scaling is-
sues affecting model performance. Furthermore, missing



data was imputed using the mean value of its respective
feature in the training set. The models used were: Regular-
ized Logistic Regression (RLR), Regularized Logistic Re-
gression with the addition of each covariate squared to the
design matrix (RLR?), Support Vector Machines (SVM),
and Random Forests (RF).

The methods were evaluated using two metrics of per-
formance. The first, the area under the receiver operator
characteristic curve (AUROC), represents the probability
of correctly ranking a positive outcome higher than a neg-
ative outcome, or mathematically p(gly = 1 > gly = 0).

As the AUROC is invariant to a lack of model calibra-
tion the negative log-likelihood is also presented. If the
model developed is treated as a function f(x) which out-
puts a probability then the negative log likelihood is cal-
culated as —log(p(y|f(z))). Assuming a binomial likeli-
hood function for the target of interest, y, the negative log
likelihood can be calculated as:

log(p(yf(x)))

The closer this value is to 0, the better the calibration
and discrimination of the model.

—log (f(x)) xy—log (1 — f(x))x (1—y)

3. Results

The performance as measured by the AUROC is shown
in Figure 1. The performance as measured by the negative
log likelihood is shown in Figure 2. The ideal value for the
AUROC is 1, and higher values indicate better discrimina-
tion. The ideal value of the negative log likelihood is 0,
and lower values are better.

4. Discussion

All models have an AUROC over 0.80, which is consid-
ered to provide excellent clinical utility in the field of out-
come prediction [4]. The proposed pre-processing method,
BCOR, is an effective means of further improving this effi-
cacy. For most models the BCOR resulted in large perfor-
mance increases as compared to traditional domain knowl-
edge techniques. It is interesting to note the relative insen-
sitivity of RF to pre-processing techniques. This is likely
because a RF offers a substantial amount of flexibility. Val-
ues which are outliers can be assigned a distinct contribu-
tion, and thus RFs are capable of naturally handling out-
liers. However, this flexibility comes at a cost, and RFs
usually require a large dataset to learn from. The SVM has
been shown to be effective for smaller datasets, as is ap-
parent in this work. As SVMs are sensitive to scale, the
removal of values which are more extreme than would rea-
sonably occur in the class distributions improves the per-
formance. Surprisingly, the addition of missing value flags
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Figure 1. Discrimination of each method as measured by
the area under the receiver operator characteristic curve
(AUROC). The preprocessing methods applied prior to
feature extraction are shown on the y-axis. The symbol
and color combinations represent: no pre-processing (red
diamond), addition of missing value flags (blue circle),
BCOR which includes feature transformation (green trian-
gle), and BCOR combined with missing value indicators
(orange cross). These methods are compared when classi-
fying ICU mortality with different machine learning tech-
niques as specified on the figure.

—<4—No additional preprocessing
—6—Missing value flags
—¥-Transformed

BCOR 7 Transformed and flags

o w4
Domain Knowledge 4 RF o
No preprocessing -{ o v

BCOR-
Domain Knowledge -
No preprocessing - v

BCOR | R v o4
Domain Knowledge -| RLR” v 4
No preprocessing v 4

BCOR - v
Domain Knowledge v
No preprocessing v

U
1100 1150 1250 1300

1200
Negative Log Likelihood

Figure 2. Calibration and discrimination of each method
as measured by the negative log likelihood. Lower val-
ues are better. The preprocessing methods applied prior
to feature extraction are shown on the y-axis. The sym-
bol and color combinations represent: no pre-processing
(red diamond), addition of missing value flags (blue cir-
cle), BCOR which includes feature transformation (green
triangle), and BCOR combined with missing value indi-
cators (orange cross). These methods are compared when
classifying ICU mortality with different machine learning
techniques as specified on the figure.

strongly hinders the performance of the SVM models. This
is likely due to the high feature to data ratio, which is fur-
ther increased by the addition of missing value flags (up to



385 features for 3000 observations in each fold).

The best performing combination of models and prepro-
cessing methods was an RLR which utilized the BCOR
method prior to feature extraction, the BCOR method af-
ter feature extraction (which contains a feature transfor-
mation step causing feature distributions to be more Gaus-
sian), and the addition of missing value flags. This is not
entirely unsurprising as the RLR method strongly bene-
fits from L1-regularization, which prevents model overfit-
ting and reduces the impact of high feature to observation
ratios. The AUROC of the RLR model, one of the most
common predictive models used in the medical literature,
was increased from 0.83 to 0.85. This demonstrates the
significant part that preprocessing data plays in model per-
formance, even though it is an often neglected topic.

Interestingly, the RLR? model did not improve upon the
RLR model performance appreciably, or at all when used
in conjunction with BCOR. This indicates that the addition
of a second degree of freedom for each feature was not
useful. This may be explained by the presence of a high
degree of colinearity caused by features extracted from the
same variable. The addition of a term for median heart
rate squared, for example, is not useful when the model
can already utilize features representing the first and last
heart rate as additional degrees of freedom.

Domain knowledge pre-processing was also effective at
improving model performance. The removal of unphys-
iological values is an effective method of controlling for
transcription errors and other artefacts. However, domain
knowledge is not trivial to implement. First, it requires
agreement of a range of allowable values, which is often
arbitrarily selected. For example, a common upper thresh-
old on heart rate is 300, but one can imagine a heart rate of
299 is also unreasonable. In contrast, the BCOR method
chooses thresholds in a data-driven way, and also selects
thresholds in a tractable fashion. Additionally, it is not
always possible to select meaningful thresholds by hand,
especially for long-tailed distributions such as white blood
cell count.

5. Conclusion

Three methods of preprocessing medical data were com-
pared using four machine learning methods. The methods
were shown to consistently improve performance across all
models. Using indicator variables for missing values, and
thus allowing algorithms to learn the weighting for these
missing values, generally improves performance except in
the case of SVMs. The proposed preprocessing method
BCOR is completely automatic, reducing the burden of
quality assurance which is prevalent in healthcare. Further-
more, the method substantially improves the performance
of the most common regression model. While data pre-
processing is rarely studied in the for mortality prediction,
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these approaches can provide dramatic improvements.
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