
Scaling the PhysioNet WFDB Toolbox for MATLAB and Octave

Tristan Naumann1, Ikaro Silva2

1MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
2 MIT Laboratory for Computational Physiology, Cambridge, MA, USA

Abstract

The PhysioNet WaveFormDataBase (WFDB) Toolbox
for MATLAB and Octave is a collection of functions for
reading, writing, and processing physiologic signals and
time series used by PhysioBank databases. Using the
WFDB Toolbox, researchers have access to over 50 Phys-
ioBank databases consisting of over 3TB of physiologic
signals. These signals include ECG, EEG, EMG, fetal
ECG, PLETH (PPG), ABP, respiration, and others.

The WFDB Toolbox provides support for local concur-
rency; however, it does not currently support distributed
computing environments. Consequently, researchers are
unable to utilize the additional resources afforded by pop-
ular distributed frameworks. The present work improves
the scalability of the WFDB Toolbox by adding support
for distributed environments. An example is shown of sur-
rogate data significance testing. The example uses Star-
Cluster to launch, within minutes, Hadoop Streaming on a
newly created Amazon EC2 cluster with minimum configu-
ration. The results demonstrate up to 30 fold performance
increases can be achieved compared to single node pro-
cessing.

1. Introduction

The recent abundance of cloud offerings has made it eas-
ier and more affordable than ever for researchers to ob-
tain the computational resources necessary for grappling
with “big data.” However, this opportunity also presents
a significant challenge: many existing tools do not sup-
port the distributed computing environments provided by
cloud solutions. The WFDB Toolbox for MATLAB and
Octave is one such tool [1]. While commonly used to ana-
lyze the signals and time series available in the PhysioBank
databases, its usage does not currently scale beyond a sin-
gle machine.

This ongoing work aims to provide simple instruc-
tion and examples for researchers looking to leverage the
WFDB Toolbox in distributed environments. Specifically,
this paper discusses some of the tools that can be used and
a corresponding codebase available on PhysioNet provides

Figure 1. Proposed software architecture for processing PhysioNet
data with Amazon EC2. StarCluster automatically configures the EC2 in-
stance(s), requiring minimal additional configuration from the user. De-
fault standard templates for different cluster size (number of nodes and
instance types) are provided in the corresponding codebase.

more detailed guidance with respect to: (1) deploying an
appropriate cluster, (2) working with it, and (3) running
code on it.

2. Methods

A schematic diagram of our proposed software stack
is shown in Figure 1. Amazon’s Elastic Compute Cloud
(Amazon EC2) provides re-sizable compute capacity in the
cloud and related services provide the other necessary re-
sources (e.g. storage) for working with big data. While
only one of the many options available to researchers,
Amazon EC2 is simple to use and has a large software
ecosystem. As such, the present work uses this platform,
but should likely generalize to others.

On top of this platform, Apache Hadoop [2] is used
to facilitate distributed computation and StarCluster [3] is
used for the purposes of deploying and managing an ap-
propriate cluster.

2.1. Hadoop

Apache Hadoop is an open-source framework for stor-
age and processing large data sets. Namely, it sup-
ports computation and storage abstractions derived from
Google’s MapReduce and Google File System [4–6].
While it was originally designed to be run on clusters of

ISSN 2325-8861 Computing in Cardiology 2014; 41:161-164.161

consumer hardware, it is often run in cloud environments
as well.

Being a mature software project, Hadoop is both pow-
erful and extremely configurable. In the context of dis-
tributing WFDB Toolbox computation, however, it is pri-
marily useful to leverage only two of its components: (1)
Hadoop MapReduce to “map” WFDB Toolbox commands
across PhysioBank files stored in NFS, and (2) Hadoop
Distributed File System (HDFS) for storing the results of
the computation performed as a result of each “map.” In
this manner, Hadoop is used to solely to coordinate the par-
allel execution of commands across the cluster and store
the resulting output while the input lies on storage accessi-
ble to all nodes in the cluster.

2.2. StarCluster

Deploying and managing a cluster can be a difficult
task. Even when facilitated by the tools provided by Ama-
zon EC2, researchers need to concern themselves with the
minutiae of provisioning resources, configuring them ap-
propriately, and making them aware of one another.

StarCluster is a utility for creating and managing com-
puting clusters hosted on Amazon EC2 with sensible de-
faults. Therefore, it is used to facilitate deploying and con-
figuring environments suitable for the WFDB Toolbox.

3. Processing PhysioNet Data in EC2

This paper’s corresponding codebase contains step-
by-step instructions, WFDB-specific cluster configuration
templates, and code used to run the following examples.

In the examples, we use PhysioNet’s Massachusetts
General Hospital/Marquette Foundation Waveform Database
(MGHDB). The MGHDB consists of records from 250 pa-
tients with a wide range of pathophysiologic states. These
records vary in length starting from 12 to up to 86 minutes.
Most cases are about an hour long.

3.1. Cluster Architectures

Clusters of different sizes, according to Table 1, were
used to run the examples in this article. These configura-
tions use three Amazon EC2 instance types, namely:
• t1.micro: 1 vCPU, 0.613 GiB RAM per node. Ideal for
experimenting while leveraging Amazon’s ”Free Tier” us-
age.
• m1.small: 1 vCPU, 1.7 GiB RAM per node. A good
general-purpose instance type with a balance of compute
and memory.
• c1.xlarge: 8 vCPU, 7 GiB RAM per node. An instance
type with high performing processors ideal for computa-
tionally heavy loads.

The nodes on each of the clusters were configured
through the StarCluster to automaticaly boot with the fol-
lowing software suite installed: Ubuntu 12.04, GNU Oc-
tave Version 3.2.4, Hadoop 0.20.2, and Java version 1.6.
The WFDB Toolbox version 10.5.23 and the PhysioNet
database MGHDB were installed through a single shell
script available in the code repository of this project. Both
the WFDB software package and the PhyioNet data were
stored on a shared NFS mount, accessible to all the nodes
on a given cluster. The NFS mount point consisted of a
20 GB Amazon Elastic Block Store (EBS) volume. This
mechanism provided a persistent and scalable storage vol-
ume. For each cluster configuration, a single node (i.e.
“sequential mode”) was also run with each of the exam-
ples in order to provide a reference benchmark.

Table 1. Cluster specifications. Several instance types and sizes
were used ranging from a single t1.micro instance, up to eight of of the
c1.xlarge instances.

Cluster Instance Type Size
wfdbcluster t1.micro 1
wfdbcluster-small m1.samll 2
wfdbcluster-medium m1.small 4
wfdbcluster-large m1.small 8
wfdbcluster-small-fast c1.xlarge 2
wfdbcluster-medium-fast c1.xlarge 4
wfdbcluster-large-fast c1.xlarge 8

3.2. Example1: Spectral indexing

As a first example, a simple spectral indexing task in-
spired from music information retrieval systems was ap-
plied to all signals from the MGHDB [7]. The spectral
indexing task consisted of a single map that found the 3
largest peaks on the spectrum of a given signal. Peaks
were considered separate if they were more than 50 Hz
apart. The main purpose of this example was to quantify
the amount of overhead associated with a distributed com-
puting environment in EC2 versus running the process on
a single serial instance for tasks with minimum computa-
tion.

3.3. Example2: Surrogate Series Test for
Non-linearity

A more realistic and computationally intensive exam-
ple involves the use of Mont Carlo simulations for boot-
strapping statistical tests of non-linearity on a time-series.
More specifically, for each of the 730 ECG signals in the
MGDHB, RR series were extracted using WFBD Software
Package and the functions WQRS and ANN2RR [1, 8]. We
then generated 20 amplitude adjusted surrogate RR series
from each original RR series according to the Octave script

162

Figure 2. Implementation of the surrogate series test for non-linearity.

f u n c t i o n y= s u r r o g a t e (x)
%Step 1 : Ampl i tude t r a n s f o r m o r i g i n a l
%d a t a t o G a u s s i a n d i s t r i b u t i o n
N= l e n g t h (x) ;
y= randn (N , 1) ;
y=ampTransform (x , y ,N) ;

%Step 2 : Phase randomize s e r i e s i n 1
y= p h a s e S h u f f l e (y ,N) ;

%Step 3 : Ampl i tude t r a n s f o r m #2 t o o r i g i n a l
y=ampTransform (y , x ,N) ;

f u n c t i o n t a r g e t =ampTransform (sou rce , t a r g e t ,N)
%S t e p s :
%1 . S o r t t h e s o u r c e
%2 . S o r t t a r g e t based on s o u r c e
%3 . Swap s o u r c e by t a r g e t
%4 . S o r t t a r g e t by i n c r e a s i n g t ime i n d e x s o u r c e
s o u r c e = [[1 :N] ' s o u r c e] ;
s o u r c e = s o r t r o w s (sou rce , 2) ;
t a r g e t =[s o u r c e (: , 1) s o r t (t a r g e t)] ;
t a r g e t = s o r t r o w s (t a r g e t , 1) ;
t a r g e t = t a r g e t (: , 2) ;

f u n c t i o n y= p h a s e S h u f f l e (x ,N)
%S h u f f l e s p e c t r u m
X= f f t (x) ;
Y=X;
mid= f l o o r (N/ 2) + mod (N , 2) ;
p h i =2* p i * r and (mid - 1 , 1) ; %G e n e r a t e random phase
Y(2 : mid)= abs (X(2 : mid)) . * cos (p h i)

+ j * abs (X(2 : mid)) . * s i n (p h i) ;
i f (~mod (N, 2))

%Even s e r i e s , i g n o r e N y q u i s t
Y(mid+2 :end)= c o n j (f l i p u d (Y(2 : mid))) ;
Y(mid +1)=X(mid + 1) ;

e l s e
%Odd s e r i e s , no N y q u i s t
Y(mid+1 :end)= c o n j (f l i p u d (Y(2 : mid))) ;

end
y= r e a l (i f f t (Y)) ;

shown below. Statistics computed on such surrogate series
versus original series allows us to test the null hypothe-
sis that the original time series was generated by a process
with linear dynamics with possibly non-linear, monotoni-
cally increasing, measurement function [9, 10]. The statis-
tic used to test for non-linearity was the short term slope of
the multi-scale entropy curve using WFDB’s MSE func-
tion [11].

4. Results

Figures 3 and 4 show the computation time of the exam-
ple tasks on clusters of different size on Amazon’s EC2.
For the spectral indexing task, the overhead of starting
Hadoop on a distributed mode on a small cluster size was
detrimental to performance (increasing the computation

time by as much as 5 fold). The spectral indexing task
exhibited improved computational time only when faster
nodes were used.

The results for the second example show a clear ad-
vantage of performing surrogate data testing on a dis-
tributed fashion 4. This is not surprising, since this task is
very computationally intensive and embarrassingly paral-
lel. Improvement in speed of close to 30 fold was observed
a cluster consisting of eight c1.xlarge nodes.

Figure 3. Results of the spectral indexing example in EC2 with clusters
of different sizes.

5. Discussion

An unprecedented ampleness of distributed computing
environments is now available to researchers, among these:
Amazon EC2, Microsoft Windows Azure, Google Com-
pute Engine, and Open Stack. The focus of this paper
was to show-case a powerful software-stack that allows
researchers to quickly process PhysioNet data in a dis-
tributed fashion with minimum configuration overhead.
The software stack includes industry standard tools like
Hadoop, and the WFDB Software package. The example
codes associated with this work will be posted on Phys-
ioNet, along with a tutorial, for the interested researchers.

Our results do not show any benefit of distributed com-

163

Figure 4. Results of the surrogate testing in EC2 with clusters of
different sizes.

puting on small nodes for tasks that are relatively sim-
ple and fast to compute on individual records (Example
1). In general, the amount of overhead associated with
the management of the distributed environment diminishes
any computational gain from the extra nodes. Part of the
computational costs may be due to the fact that we used
Hadoop exclusively as queuing tool: we did not maximize
it’s efficiency by processing the data directly in HDFS nor
leveraging the “reduce” step. This is a current limitation
of our software stack, and requires either a redesign of the
WFDB software to operate against single files (rather than
“records”) or development of a package using Hadoop’s
Java API to control the low level HDFS data splits of
WFDB records.

On the other hand, a large (close to 30 fold) increase
in performance was obtained for tasks that are computa-
tionally intensive and massively parallel (as in the case of
Example 2). Thus tasks that involve intensive computa-
tion on individual record files are likely to benefit from the
current infrastructure. In the end, we hope that the code
and the examples that we make available on PhysioNet will
help researchers to quickly decide for themselves if a dis-
tributed environment is efficient enough for their particular
computational needs.

Acknowledgments

This research was funded in part by the Intel Science
and Technology Center for Big Data and the National Li-
brary of Medicine Biomedical Informatics Research Train-

ing grant (NIH/NLM 2T15 LM007092-22) which supports
Tristan Naumann as well as the National Institute of Gen-
eral Medical Sciences grant NIH/NIGMS R01-GM104987
which supports Ikaro Silva. The authors would like to
thank Benjamin Moody, Mengling ’Mornin’ Feng, and
Mohammad Ghassemi for helpful discussions as well as
Professors Peter Szolovits and Roger G. Mark, whose labs
enable research on improving health care through the ap-
plication of technology.

References

[1] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley
HE. Physiobank, physiotoolkit, and physionet components
of a new research resource for complex physiologic signals.
Circulation 2000;101(23):e215–e220.

[2] Apache Software Foundation. Apache Hadoop, 2014. URL
http://hadoop.apache.org/.

[3] J. Riley. StarCluster, 2014. URL
http://star.mit.edu/cluster/.

[4] Dean J, Ghemawat S. Mapreduce: simplified data process-
ing on large clusters. Communications of the ACM 2008;
51(1):107–113.

[5] Ghemawat S, Gobioff H, Leung ST. The google file system.
In ACM SIGOPS Operating Systems Review, volume 37.
ACM, 2003; 29–43.

[6] White T. Hadoop: The definitive guide. ” O’Reilly Media,
Inc.”, 2012.

[7] Wang A, et al. An industrial strength audio search algo-
rithm. In ISMIR. 2003; 7–13.

[8] Zong W, Moody G, Jiang D. A robust open-source algo-
rithm to detect onset and duration of qrs complexes. In
Computers in Cardiology, 2003. IEEE, 2003; 737–740.

[9] Kantz H, Schreiber T. Nonlinear time series analysis, vol-
ume 7. Cambridge university press, 2004.

[10] Kaplan D, Glass L. Understanding nonlinear dynamics,
volume 19. Springer, 1995.

[11] Costa M, Goldberger AL, Peng CK. Multiscale entropy
analysis of biological signals. Physical Review E 2005;
71(2):021906.

Address for correspondence:

Ikaro Silva
45 Carleton St.
MIT LCP Cambridge, MA 02142
ikaro@mit.edu

164

