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Abstract

This study aims to understand the effect of variations in
cardiac conductivity values on defibrillation thresholds in
a simple heart-in-a-bath model. A generalised polynomial
chaos approach is used to generate 41 sets of four cardiac
conductivity values based on the three commonly used data
sets. Simulations, using the bidomain equations, are per-
formed on an isolated heart placed in a bath with a pair
of defibrillation paddles, of varying potential differences,
at the sides of the bath. The polynomial chaos approach
allows the calculation of mean and variance of extracellu-
lar potential and potential gradient fields within the heart.
The results show that conductivity values have a significant
effect on the thresholds required to defibrillate the heart.

1. Introduction

It has been known for some time that the values for con-
ductivity used in bidomain models of cardiac tissue lead to
significant differences in the epicardial potential distribu-
tions that arise from subendocardial ischaemia during the
ST segment [1,2]. These studies show that for a given
shape and thickness of the ischaemic region, the resulting
epicardial potential distributions can show anything from
ST elevation over the boarders of the ischaemic region (us-
ing the data of Clerc [3] or Roberts et al. [4]) to purely
ST depression (using the data of Roberts and Scher [5]).
These observations lead to questions of whether similar is-
sues arise in models of other electrocardiographic scenar-
ios. Here, the question of the effects of the above conduc-
tivity values on defibrillation thresholds will be examined.

Defibrillation is an important clinical tool in restoring
the heart to normal sinus thythm after some form of ven-
tricular fibrillation. Restoration to sinus rhythm can be
achieved by either external defibrillators or by an im-
planted cardioverter-defibrillator (ICD) [6]. While the cor-
rect application of potential differences across the heart
via external defibrillators can be found via trial and error
(as seen on many television programmes), it is much more
critical for an ICD to achieve the correct potential differ-
ence the first time.
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Consequently, accurate values for the conductivities are
required in order to optimise the design of an ICD. Ap-
plying the correct potential difference to the heart the first
time can increase the longevity of the ICD and not subject
the patient to an unnecessarily large shock to restore sinus
rhythm.

This study considers the simple situation of a heart in
a bath. Generalised polynomial chaos is used to generate
a range of conductivity values. These are then used in a
bidomain model of the ventricles to determine the mean
and variance of the extracellular potential distribution and
the extracellular potential gradient for a given potential dif-
ference across the “paddles” in the model.

2. Methods

The simulation model for this study is a simple heart in a
bath. The heart geometry was obtained from the Scientific
Computing and Imaging Institute at the University of Utah
and this has been used in previous studies of this nature
[7]. For the simulations presented here, the heart is placed
in a bath of fluid (equivalent to blood) which surrounds the
heart and fills the ventricles (see Figure 1).

It is assumed that the equations governing the electric
field in the heart are the passive bidomain equations [8, 9]

V- -M;Vpi = -1 and V- -MVepe =1, (1)

where ¢, (h = i or e) is the potential, (¢=intracellular,
e=extracellular), My, are the conductivity tensors and I,
is the transmembrane current per unit volume. In general,
the conductivity tensors can be written as

My, = AGLAT 2)

where A represents the local direction of the fibres and
Gy, is a diagonal matrix, containing the longitudinal (g;)
and transverse (gp.) tissue conductivities along the diago-
nal. It is further assumed that the conductivity normal to
the tissue sheets is the same as the transverse conductivity.
The electrical potential within the fluid, ¢y, is governed by
Laplace’s equation

Vi, = 0. 3)
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Figure 1. Model of the heart in a bath. The blue lines rep-
resent the outside of the bath and the green discs represent
the defibrillation paddles.

For this simple model, the boundary conditions are that
the surrounding bath is insulated, except for the region de-
fined by the defibrillation paddles, where one paddle was
maintained at OV and the potential at other varied to cre-
ate different potential differences across the heart. At the
tissue—blood interfaces it is assumed that there is continu-
ity of potential and current between the extracellular space
and the blood. It is also assumed that the intracelllular
space is insulated. In other words,
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where g, = 0.67mS/mm, is the conductivity of blood [10]
and n is the outward pointing normal direction.

The governing equations (1) and (3), subject to the
boundary and interface conditions (4), are solved using the
finite element method as implemented in SCIRun [11]. An
additional SCIRun module has been developed to compute
the mass matrix for the finite element method.

The conductivity values obtained from various experi-
ments are shown in Table 1, along with the respective ex-
treme values. In order to apply generalised polynomial
chaos on the conductivity values, some form of distribu-
tion for these values must be assumed. Given that there are
only three data sets available, it is assumed that each con-
ductivity value could be taken from a uniform distribution
varying between the respective minimum and maximum.

Generalised polynomial chaos is a method of quanti-
fying the uncertainty in the output from a mathematical
model, given uncertainty in the input parameters [12]. In
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Table 1. Conductivity data (in mS/mm) from the indi-
cated studies. Here the normal conductivities are taken to
be equal to the transverse conductivity values.

Study gel  Get  Gi Git

Clerc [3] 0.63 024 0.17 0.019
Roberts et al. [4] 0.22 0.13 0.28 0.026
Roberts and Scher [5] | 0.12 0.08 0.34 0.06
Minimum 0.12 0.08 0.17 0.019
Maximum 0.63 024 034 0.06

these simulations, the output is the electrical potential in
the extracellular tissue and the input is the conductivity
parameters. The generalised polynomial chaos is imple-
mented via stochastic collocation [13, 14], where the col-
location points are based on a Clenshaw-Curtis numeri-
cal integration scheme. Finally, Smolyak’s method [15] is
utilised to reduce the size of the integration space. Hence,
having four conductivity values (i.e. four dimensions) and
using third order integration results in 41 four dimensional
integration points and 41 integration weights w;, j =

.,41. The 41 integration points are used to create

41 sets of four conductivities (gflj),gftj),gg),gét)), j=

1,...,41, by simple linear interpolation between the ex-
tremes on each conductivity value.

Next, the governing equations (1), (3) are solved
for each of the 41 conductivity sets. If gbéj ) =
qﬁe(gflj),gﬁ),ggl),géi)) j=1,...,41, is the resulting ex-
tracellular potential distribution resulting from the conduc-
tivity values (gfl]),gfg),gél),gét)), j=1,...,41, thenthe
mean extracellular potential distribution is given by

41 )
=D wod
j=1

®)

and the variance of the extracellular potential distribution
is

Z wj( (W) —

It is also possible to calculate the mean and variance of the
extracellular potential gradient field as

(D) var (6)

41
Vée =Y w;Vel (7)
j=1
and
(Vére) ij Vol —Ve)?. (8)



Table 2. Number of conductivity data sets (out of a max-
imum of 41 sets) for which the defibrillation threshold of
0.6V/mm in 90% of the tissue volume is met, for various
potential differences across the defibrillator paddles.

Defibrillator Number of
Potential Conductivity
Difference (V) Data Sets
150 0
160 1
170 3
180 8
190 18
200 28
210 33
220 38
230 41
3. Results

The governing equations are solved, as described above,
for each of the 41 conductivity sets and for a range of po-
tential differences across defibrillator paddles. Mean and
variance fields are calculated for both the extracellular po-
tential and the gradient of the extracellular potential. The
potential differences used range from 150V up to 230V.

Table 2 shows the number of cardiac conductivity sets
that meet the defibrillation threshold of 0.6V/mm over 90%
of the volume of the heart tissue [6] for a given potential
difference across the defibrillator paddles. It can been seen
that a potential difference of 160V is required before any
conductivity data sets meet this threshold. Overall, a po-
tential difference of 230V is required for all conductivity
data sets to meet the threshold. This large range of poten-
tial differences, 70V, is quite considerable relative to the
230V potential difference required for all conductivity data
sets to meet the minimum threshold.

Figure 2 shows the mean extracellular potential gradi-
ent field, from the 41 different conductivity data sets in
three cutting planes through the heart, for defibrillator pad-
dle potential differences of 150V (top) and 230V (bottom).
The mesh shown in the top panel of this figure indicates
the outline of the heart. For the 150V potential difference,
the only high potential gradients are seen near the epicar-
dial and endocardial surfaces of the heart tissue. It can
also be seen from the figure that the regions of lowest po-
tential gradient are deep within the tissue. Regions near
the paddles also show high potential gradients. With a po-
tential difference of 230V, most of the tissue achieves the
required 0.6V/mm potential gradient. However, there are
still regions towards the centre of the heart, near the ven-
tricles, that have low potential gradients.

Figure 3 shows the variance in the gradient of extracellu-
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Figure 2. Average extracellular potential gradient field
calculated from 41 sets of cardiac conductivity values for
potential differences of 150V (top) and 230V (bottom)
across the defibrillator paddles.

lar potential fields generated from the 41 conductivity data
sets with defibrillator paddle potential differences of 150V
(top) and 230V (bottom). In both cases the greatest vari-
ance in the potential gradients is near the surfaces of the
heart. There are quite large regions of high variance in po-
tential gradient around the outside of the heart and smaller
regions around the walls of the ventricles. Deeper inside
the tissue itself, the variance is small.

4. Conclusions

Conductivity values have a significant effect on the
thresholds required to defibrillate the heart. In particu-
lar, there is up to a 70V difference between defibrillation
thresholds depending on the conductivity values. Such a
wide variation in the defibrillator paddle potential differ-



Figure 3. Variance of the extracellular potential gradi-
ent fields calculated from 41 sets of cardiac conductivity
values for potential differences of 150V (top) and 230V
(bottom) across the defibrillator paddles.

ence required to achieve the defibrillation threshold has
the potential to impact on the design of ICDs. To obtain
a more optimally designed ICD, a knowledge of more ac-
curate cardiac conductivities would be a considerable ad-
vantage.
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