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Abstract

Elevated heart rate is known to be an independent risk
factor for a higher overall mortality, especially for pa-
tients suffering from coronary artery disease, e.g. from
heart failure. Since pharmacological approaches can not
exclusively address heart rate, we investigated a cardiac
neuromodulation technique lowering elevated heart rate
by means of electrical neurostimulation. The idea is to
exclusively modulate the parasympathetic tone in the sino-
atrial node area to decrease heart rate. However, electri-
cal stimulation of the heart may pose a specific risk as one
temporally misplaced stimulation can cause atrial and es-
pecially ventricular fibrillation. Accordingly, we aimed to
trigger on the intracardiac electrogram in the upper right
atrium and present two algorithms satisfying the require-
ments of highly specific, secure real-time detection within
one heart beat: Decision tree and neural network. Both
algorithms were combined with a heart rate prediction
estimating upcoming action potentials to maximize beat
recognition against artifacts. The combined algorithms
were validated on human intracardiac electrograms from
electrophysiological examinations with promising results
(specificity: 100%, sensitivitytree: 70.2%, sensitivitynet:
87.3%) for secure neurostimulation.

1. Introduction

Over the decades, long term and follow-up examina-

tions have shown that heart rate itself is an autonomous risk

factor for a higher overall mortality [1]. The risk predic-

tion is independent of the existence or the extent of coro-

nary diseases [2, 3]. The predictive value remains even

after the adaption of further risk factors, e.g. left ven-

tricular systolic dysfunction, arterial hypertension, smok-

ing, age and diabetes mellitus [4–6]. Epidemiological data

show a growing risk of mortality in heart rates greater than

60 beats per minute (bpm) [2,3]. Furthermore, for patients

suffering from congestive heart failure based on coronary

Figure 1. Sequence of an ECG (lead Einthoven I, black

dashed) and corresponding IEGM (blue solid) taken in the

upper right human atrium.

artery disease (CAD), treated with beta blockers, heart rate

retains its prognostic importance: Patients having resting

heart rates above 70 bpm show inter alia significantly in-

creased cardiovascular mortality rates [7]. Beyond that,

with each 5% increase of heart rate, cardiovascular mor-

tality increases by 8% [7]. In this patient collective heart

rate reduction by a selective sinoatrial node (SAN) blocker

with if-channel inhibitors such as Ivabradine (by an aver-

age of 6 bpm) resulted in a decrease of hospitalization, but

not in a reduction of the cardiovascular mortality rate [8].

Besides, the clinically achievable decrease of the SAN fre-

quency is pharmacologically limited and rarely achieves

more than 10− 20 bpm. Moreover, these medications are

not able to exclusively modulate the SAN frequency but

also have an impact on electrophysiological conditions in

the atria or can rarely cause central nervous visual disor-

ders [9]. This underlines that available pharmacological

approaches are only of limited use for frequency reduction

according to their inadequate maximum effectiveness, the

extracardiac side effect profile and the insufficient compli-

ance of medication intake.

We contrived a new technique called ‘cardiac neuro-

modulation’. The fundamental idea behind this method is

the reduction of heart rate by selective modulation of the

parasympathetic tone to the SAN by electric neurostimula-

tion. Electrical neurostimulation poses a localized therapy

with maximum benefit with virtually no systemic side ef-

fects. Modulation is achieved by electric neurostimulation
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via an inserted catheter at the upper right atrium in the area

of the SAN. The expected extent of rate reduction of this

methodology is higher compared to medications. Addi-

tionally, a reversibly controllable frequency reduction in a

dynamic range is a major advantage. We investigated the

technique of cardiac neuromodulation in a clinical study

which showed good results with a decrease of the ini-

tial heart rate by 20% [10]. To determine optimal stim-

ulation parameters for cardiac neuromodulation and func-

tional characterization of the intracardiac nervous system,

we developed a neurostimulator providing various stimula-

tion patterns (monophasic, biphasic, sinusoids and damped

sinusoidal oscillations) within a wide range of burst fre-

quencies, voltage amplitude and duration of the burst cycle

length [11]. Neuromodulation (or neurostimulation) itself

is an upcoming technique under investigation and, to some

extent, already in use in various medical research fields,

e.g. spinal cord stimulation (SCS) for treatment of e.g.

chronic pain and failed back surgery syndrome [12] and

deep brain stimulation (DBS) for the alleviation of Parkin-

son’s disease, Tourette syndrome or depression [13]. Ini-

tial experiences in human trials have shown promising re-

sults in ventricular frequency reduction in permanent atrial

fibrillation by electrical neuromodulation of the parasym-

pathetic tone to the atrio-ventricular node [14].

Other than in SCS and DBS, the cardiac neuromodu-

lation has one major challenge: Electrical stimulation in

the heart in general poses the danger of producing arrhyth-

mia. Therefore, calculated triggering of electrical impulses

is essential. For this purpose, the electrode catheter, used

for sensing and stimulation, accesses the intracardiac elec-

trogram (IEGM) in the SAN area. To ensure safe stimula-

tion of the parasympathetic nerve, we provided stimulation

in the absolute refractory period of the atrial myocardium.

Hence, exact datection of IEGM beats is indispensable. A

typical IEGM from the SAN can be seen in Fig. 1. The

IEGM (blue solid) presented here in concordance to the

ECG (Einthoven I, black dashed) has been recorded in the

upper right atrium beginning with the onset of P-wave. It

can be seen that the amplitude and shape of the IEGM

beats may vary. In this paper, we present a comparison of

two algorithms to investigate how IEGM triggered cardiac

neuromodulation can be implemented in a secure way, op-

erating in real-time in order to decrease high resting heart

rates.

2. Methodology

The developed neurostimulation system is going to be

used in animal experiments investigating the optimal stim-

ulation patterns and maximum achievable, physiologically

sensible decrease in heart rate. To avoid side effects caused

by erroneous electrical stimulation, a bipolar electrode

catheter will tap the IEGM, which is in use for both sens-

ing and stimulation. Algorithms for this application have

very specific requirements:

• specificity of the algorithm is most important due to pos-

sible effects of one incorrect stimulation

• robustness and real-time capability must be provided to

allow neurostimulation within one heart beat cycle in the

refractory period of heart muscle cells

• simple implementation on a microcontroller, as the neu-

rostimulator device is based on a MSP430 from Texas In-

struments.

Specificity or true negative rate (TNR) is defined as:

TNR =
TN

TN + FP
(1)

with TN as the number of true negatives and FP as the

number of false positives. In most medical engineering

application such as ECG monitoring, an attempt is made

to increase the sensitivity. Sensitivity or true positive rate

(TPR) is defined as:

TPR =
TP

TP + FN
(2)

with TP as the number of true positives and FN as the

number of false negatives.

For testing and evaluation of the algorithms, a dataset

of 604 IEGM beats with an overall duration of about eight

minutes with a sampling rate of 977 samples/s is available.

These signals have been recorded during sinus rhythm of

standard catheter ablation with ECG leads Einthoven I, II,

and III and several IEGM signals in the right atrium of

six patients (male and female). All recorded signals have

been separated with Matlab into sequences of 32 samples

with an overlap of 16 samples. IEGM classification was

carried out in correlation to the ECG signals and marked

whether or not an IEGM beat is correctly detected. Ac-

cording to the circumstance of the signal recording during

this standard procedure, we found the signal shape varying

both interindividual and intraindividual. Nevertheless, this

scenario allows controlled in silico testing.

We here compare two algorithms that satisfy the above

mentioned requirements combining morphological and

temporal classification. First, we use a binary decision tree

with four features: skewness, change of skewness, stan-

dard deviation and variation of the standard deviation. We

established this feature combination having the advantage

of only calculating two features in each step, storing in a

variable and calling from there, sustaining real-time opera-

tion. In this case, the specificity of the binary decision tree

achieved 99.27% and a sensitivity of 63.87% [15]. As we

found that according to the varying IEGM beat shape and

possible artifacts in between two IEGM misclassifications

are inevitable, we here combine the decision tree with a
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Figure 2. Sequence with ECG (black dashed), IEGM (blue solid), manual IEGM beat marker (green �), decision tree

marker (red �) and the combination of decision tree and heart rate prediction (turquoise �). High levels of markers

represent detected IEGM beats.

heart rate prediction:

T10(t > t0) =
1

10

i=9∑

i=0

T10(t−i). (3)

Averaging over the last ten recognized heart cycles and

thereby calculating the average cycle length duration T10

allows an estimation of the upcoming IEGM beat under the

assumption of a symmetric distribution and not taking into

account differences in standard deviation. This prediction

leads to a certain window function by which the morpho-

logical classifications are mashed with variable threshold.

As an alternative to the decision tree, we implemented a

feed forward neuronal network with one hidden layer con-

sisting of three neurons. Decision tree and neural network

operate on the same features, while for the latter they are

normalized first. Training is provided using the backprop-

agation algorithm for weight adaptation. As optimization

Levenberg-Marquardt is used, which minimizes the mean

squared error. Positive and negative classes are weighted

differently for training: According to their differing sam-

ples quantities, we normalized by a factor of 1/number.

To ensure high specificity rates, the neural network is also

combined with the window function of the heart rate pre-

diction of eq. 3.

3. Results

To achieve reliable values for the quality of both algo-

rithms, we used the leave-one-out cross validation for ex-

amination with k subsamples. For k times the cross vali-

dation is repeated with one subsample for testing and the

remaining (k − 1) subsamples as the training data. The

results of all k folds are than averaged and analyzed. Vali-

dation of both algorithms were performed with Matlab for

detailed analysis of the classification results. Fig. 2 shows

an example of a typical signal sequence: For verification

reasons the ECG Einthoven lead I (black dashed) is plotted

in addition to the IEGM signal (blue solid). IEGM markers

(green �) show the manual decision in correlation to ECG

for an underlying IEGM beat. Decision tree markers (red

�) show decision of the tree itself, and combined algo-

rithm markers (turquoise �) show the overall decision of

the tree combined with the heart rate prediction algorithm.

It can be seen that artifacts that morphologically resemble

the IEGM can be eliminated according to the additional

temporal classification.

The binary decision tree combined with heart rate pre-

diction showed best performance with a signal tolerance

of 0.17 mean cycle length as heart rate variability of the

recorded signals is in a normal range. Furthermore, as

within neurostimulation periods heart rate is decreasing

from beat to beat, the window function must not be set too

narrow. The neural network showed best performance with

scaling with shifted and scaled features as input around the

mean value.

Detailed results of the algorithms are summarized in

Tab. 1. Both algorithms show very high specificity TNR
of almost 100% which is of major importance for cardiac

neuromodulation. The sensitivity TNR of the neural net-

work with 87.3% is higher than the one of the decision

tree (70.2%). Nevertheless, during stimulation period 3 of

4 IEGM beats would be supported with the decision tree,

Table 1. Results of the leave-one-out cross validation pro-

cess on decision tree and neural network classification both

combined with heart rate prediction algorithm (rounded

values).

Decision tree Neural network

Specificity TNR 100% 100%
Sensitivity TPR 70.2% 87.3%
False negative rate 29.8% 12.8%
False positive rate 3.69 · 10−05% 3.69 · 10−05 %
Pos. pred. value 99.8% 99.8%
Neg. pred. value 99.3% 99.7%
Correct rate 99.4% 99.7%
Error rate 0.7% 0.3%
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which is assumed to be sufficient to lower high heart rate

and keep it on a low level. The high results of positive pre-

dictive value PPV and negative predictive value NPV in

both cases, show the high accuracy of both combined al-

gorithms. Correct rate and error rate are both extremely

good, those of the neural network being slightly better.

4. Discussion and Conclusion

Cardiac neuromodulation is a new approach to lower

pathologically high resting heart rates by means of elec-

trical stimulation. To provide secure stimulation without

unacceptable side effects, such as atrial fibrillation, trig-

gering on the IEGM is mandatory. For the investigation of

optimal stimulation parameters, the developed neurostim-

ulator is going to be used in animal experiments. In addi-

tion to the high demands on specificity and robust IEGM

detection also the real-time capability and simple imple-

mentation is of significant importance. There is no prob-

lem if not every IEGM beat is supported by cardiac neu-

romodulation, but it must not be stimulated incorrectly or

too late. According to the requirements, a binary decision

tree and a neural network have been implemented in Mat-

lab. Both have been combined with a heart rate prediction

algorithm. The testing dataset consists of human IEGM

signals recorded during standard ablation procedure and

has been manually analyzed regarding IEGM depolariza-

tions. Validation was carried out with a leave-one-out cross

validation process.

Both, decision tree and neural network, show very high

performance when combined with a heart rate prediction

algorithm based on the average of the last ten cycle length

durations. The specificity of both is extremely high (al-

most 100%) on this dataset, sensitivity of the neural net-

work is higher than the one of the decision tree. Neverthe-

less, as both combined algorithms remain real-time capa-

ble, they will be implemented on the neurostimulator de-

vice and proved in a hardware-in-the-loop system on more

datasets before experimental setup.
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