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Abstract 

Mathematical models of single cardiac myocytes have 
a valuable role in driving progress in cardiac physiology 
and in exploring the electrophysiological mechanisms 
underlying heart function. Most of these models are used 
to mimic the results of experimentally observed biological 
phenomena measured in animal models, and can also 
provide quantitative insights into natural processes. 
Adjusting parameters in an ionic model to reproduce 
experimental behaviour is difficult. Mostly, researchers 
fit the only the net current to reproduce an action 
potential (AP) shape. However, even with an excellent AP 
match in the single cell, tissue behaviour can be vastly 
different. We hypothesize that this uncertainty can be 
reduced by additionally fitting Rm.  

1. Introduction

Mathematical modeling is an important tool in the field 
of cardiac electrophysiology, providing significant 
insights into natural processes. The basic modeling unit of 
cardiac electrophysiological simulations is the single cell 
ionic model reproducing action potentials (APs). In recent 
years, various automated algorithms have been devised to 
optimize the tedious and complex fit of model parameters 
to experimental observations. For cardiac ionic models, a 
particular problem is that models that produce a good AP 
fit in single cell simulations sometimes fail to reproduce 
the AP in tissue simulations, due to the electrotonic 
loading present when cells are electrically interconnected. 
To date, researchers only fit net membrane current to 
yield proper membrane voltage changes in the single cell 
scenario.  

In this paper, we used a multi objective parallel genetic 
algorithm to fit ionic model parameters to model-
generated data using AP waveforms and membrane 
resistance (Rm). In recent years, various automated 
algorithms have been devised to optimise the tedious and 
difficult fitting. A curvilinear gradient optimization 
algorithm method [1] was used to fit the Beeler Reuter 

model [2] to a model-generated ventricular AP [3]. A 
genetic algorithm (GA) was developed by Syed et al. [4] 
to fit the Nygren et. al. human atrial model [5] to 
experimental data [6]. In the present paper, we used a 
multi-objective parallel algorithm to fit human ventricle 
model. 

We show that fitting Rm along with the AP improves 
the fit to the desired AP curve while reducing variability 
in the solutions obtained. This also reduces the variability 
of the estimated parameters. Furthermore, average error 
and standard deviation of the parameters was reduced 
significantly by fitting AP and Rm simultaneously as 
compared to fitting AP only. Thus, Rm is an important 
parameter that can provide information regarding ionic 
currents that is not sufficiently provided by just the shape 
of the AP.  

2. Methods

2.1. Rm measurement 

The membrane resistance at a particular point during 
an AP was defined as the inverse of the slope of the I-V 
curve around the membrane voltage Vm of the action 
potential at a particular time. At each indicated time (for 
instance time point B in Fig. 1), two successive clamp 
pulses were applied for 30 ms. The voltages of the two 
pulses were 10 mV above and below the Vm of the AP at 
that time, respectively (shown by red clamp pulses at 
point B in Fig. 1). The membrane current measured 5 ms 
after initiation of the clamp (black elliptical markers in 
Fig. 1) was used to construct I-V curves. Rm was 
calculated at three different points A, B and C during the 
AP at 10, 150 and 250 ms after the AP upstroke. The AP 
was run for at least 3 s to reach the steady state. 

2.2. Single cell and tissue simulations 

The Cardiac Arrhythmias Research Package (CARP) was 
used for all simulations including single cell and tissue. 
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For tissue simulations, a 1 cm square 2-dimensional grid 
was discretized into quadrilateral finite element mesh 
with edge lengths of 100 µm. A monodomain formulation 
with a time discretization of 25 µs was used. Center point 
stimulation was applied to tissue with intracellular 
conductivity in the longitudinal and transverse directions 
to the fibers set to 0.174 and 0.019 S/m respectively. 

 
2.3. Genetic algorithm approach 

Multi-objective optimization involves optimizing a 
number of objectives simultaneously. Our initialization 
procedure involved a random creation of solutions. In the 
context of multi-objective optimization [7], the extremist 
principle of finding the optimum solution cannot be 
applied to one objective alone when the rest of the 
objectives are also important. Different solutions may 
produce trade-offs (conflicting outcomes among 
objectives) among different objectives. A solution that is 
superior with respect to one objective may require a 
compromise in other objectives. This prohibits one from 
choosing a solution which is optimal with respect to only 
one objective. This clearly suggests two ideal goals of 
multi-objective optimization: (i). Find a set of solutions 
which lie on the Pareto-optimal front, and (ii) Find a set 
of solutions which are diverse enough to represent the 
entire range of the Pareto-optima, i.e., a set of solutions in 
which it is impossible to make any one individual better 
off without making at least one individual worse off. 

 To investigate the implication of Rm, a genetic 
algorithm approach was developed incorporating Rm data 
calculated at a few points during the AP, in addition to 
AP morphology. 

The following objective functions were minimized: 
(i) Normalized mean square error difference in 

the AP. 
(ii) Normalized absolute difference in Rm at three 

different time points during the AP as 
indicated in Fig. 1. by the three vertical 
arrows corresponding to three time points A 
to C. 

Fits were performed and the optimal parameter sets 
were compared. A human ventricular cardiac myocyte 
ionic model was fit [8] to an alternate human ventricle 
model. Performance was compared using a genetic 
algorithm either incorporating only AP morphology data 
or incorporating both AP and Rm data in the fit. Mean 
square error (MSE) was used as the objective function for 
AP fit and was normalized to squared difference of peak 
voltage and resting level voltage. The MSE was 
calculated from upstroke to final repolarization, not 
including the diastolic interval. Absolute difference 
between actual value and calculated value of Rm 
normalized to the actual value was used as the objective 
function for Rm fit at each point. 

 

3. Results 

Two different sets of parameters for the TNNP 
ventricle model [8] produce similar AP in single cell as 
demonstrated by Sobie at al. [9]. We determined whether 
those two parameter sets have similar AP in tissue as 
well. This was not the case; for one parameter set the 
result was similar to the single cell AP, whereas for the 
second parameter set action potential duration (APD) 
decreased significantly. Rm was evaluated in the single 
cell model at a few different time points. Rm changed 
substantially during the time course of the AP, and, 
moreover, Rm values for the two parameter sets were very 
different.  In particular, Rm for parameter set 1 at time 
point C (150 ms after the upstroke of AP, during the 
repolarization phase) is approximately ten-fold higher 
than for parameter set 2. This demonstrates that Rm 

contains information independent of AP shape. In tissue, 
the cells are connected by gap junctions that are 
responsible for charge transfer between cardiomyocytes. 
Rm provides information about how sensitive the AP 
waveform is to current flow among adjacent 
cardiomyocytes. In the single cell, a large efflux 
cancelling a large influx, or a small efflux cancelling a 
small influx, may yield the same net current and, thus, the 
same AP. However, these two scenarios will likely have 
different Rm and could be distinguished by taking Rm into 
account. 

 
 

 
 
Fig. 1. AP of TNNP human ventricle model. Rm was 

measured at point A, B and C. 
 
 
Membrane resistance R1, R2 and R3were calculated at 

points A, B, C, i.e., at time points at 10, 150 and 250 ms 
after the upstroke of. Membrane resistance was measured 
5 ms after applying the clamp pulse. In the genetic 
algorithm we attempted to fit AP as well as R1, R2, R3. 
Parallel Multiple Objective Algorithm was implemented 
in MATLAB.  

Eight variables: GCaL (maximum L type calcium 
current), GKr (maximum rapid delay rectifier 

210



conductance), Gto (maximum transient outward 

 
 
Fig. 2.  AP only fit for different Rm values. X axis 

shows parameters GCaL, GKr, Gto, GKs, GbNa, arel , brel, crel. 

Y axis shows the % of error from the control values. 
Different markers show the result for 50 different paretos. 

 
 

conductance), GKs (maximum slow delay rectifier 
conductance), GbNa (maximum background sodium 
current conductance), arel (maximum calcium 
sarcoplasmic reticulum calcium content (CaSR) -
dependent Irel) , brel (CaSR half-saturation constant of Irel), 
crel (maximum sarcoplasmic reticulum calcium content-
independent Irel) were varied in the TNNP human 
ventricle model. The genetic algorithm was used to 
attempt to find parameter sets to fit the AP produced by 
an alternative human ventricle model developed by Iyer 
et. al. [10]. The variability in the estimated parameter 
values is reduced significantly in case of AP + Rm fit (Fig. 
3) as compared to AP only fit (Fig. 2), by at least 1.5-fold 
for GCaL, Gto, Gks, GNa, arel , brel, crel. The parameters are from 
the range ±30% for AP only fit (Fig. 2) whereas it has 
been narrowed down in Fig. 3 by fitting AP as well along 
with Rm. Also the number of pareto solutions obtained 
was decreased from 50 to 6 by adding Rm fitting at three 
points during the AP.  

It was noticed that the variability in GKr (Fig. 3) was 
quite high even in case of AP + Rm fit (ranging from +15 
to -24%. In an attempt to improve this, we increased the 
number of iterations of the algorithm, such that the GA 
maintained a population of 100 potential solutions instead 
of 50 as used earlier. The average and standard deviation 
(SD) of the resulting parameter estimates is plotted in Fig. 
4, where blue error bars are for SD for AP only fit and red 
error bars are for AP+Rm fit.  As shown in Fig. 4 although 
the averages are not significantly changed, the variation 
of parameters is significantly reduced including the 
variability of GKr. Thus, it is clear that increasing number 
of iterations decreases the parameter variability. 

Fig. 3: AP + Rm fit for different Rm values. X axis 
shows parameters GCaL, GKr, Gto, GKs, GbNa, arel , brel, crel. 

Y axis shows the % of error from the control values. 
Markers show the result for 6 different paretos.  

 
 
In Fig. 4, for parameters GCaL, GK1, GKr, Gto, GKs, GNa 

the variation is reduced at least 2.5-fold whereas in case 
of arel, brel, crel it is reduced approximately 2-fold by 
adding Rm as an additional parameter for fitting along 
with AP shape. 

 
 

 
 
Fig. 4: Average and standard deviation plot for GCaL, 

GK1, Gto, Gks, GNa, arel , brel, crel. Blue error bars are for 
standard deviation for AP only fit and red error bars are 
for AP + Rm fit. 
 

4. Discussion 

This paper presents a method for enhancing fitting of 
APs in single cell models. We propose adding Rm as an 
objective, beyond just AP morphology, and demonstrate 
that it leads to less variability in the parameters values 
obtained. 

In the tissue, cells are interconnected through gap 
junctions and interact electrically with neighboring cells. 
For instance, if two single cells are connected to each 
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other, cell 1 (source) is more depolarized than cell 2, so it 
will try to depolarize cell 2 whereas the sink has opposite 
effect on the source (repolarizing influence). The 
membrane resistance, Rm, relates the change in membrane 
voltage to the current by these source-sink interactions. If 
Rm is high, a small current produces a large change in 
voltage. If Rm is low, a large current produces a small 
change in voltage. In tissue, cells are interconnected 
through gap junctions and interact electrically with 
neighboring cells.  

Take the current flow of ion X through a channel 
represented by a Hodgkin-Huxley formulation, 

∂I୶
∂V୫

ൌ ݃୶ ൅
߲݃௫
߲ ௠ܸ

ሺ ௠ܸ െ  ,ሻ	௫ܧ

where first term, is the chord conductance, and the 
second term is a function of the driving force and the rate 
of change of the chord conductance, and can be negative. 
Whether first or second term dominates depends on many 
factors which change during the AP. Pumps and 
exchangers also have nonlinear conductances. The total 
cell conductance is, then, the summation of a set of 
nonlinear conductances. 

When a particular channel is more active during a 
certain phase and contributes a large portion of the 
membrane conductance, which provides more 
information to the GA to help fit its absolute magnitude. 
For the calculation of Im for the single cell simulations 5 
ms was chosen to measure the current as a trade off so 
that most of the currents are stabilized and also very fast 
transients have decayed. In particular, we avoid the 
sodium current transient. For the theoretical Rm 
calculation, capacitive transients did not need to be dealt 
with so 5 ms was a reasonable choice. However, 
experimental measurements may require a longer time to 
allow capacitive transients to decay. If we wait too long, 
the state evolves too much and it is more a function of the 
clamp voltage. 

Fig. 4 compares the average and standard deviation of 
the normalized parameter adjustments obtained for the 
two different fitting protocols over 50 and 6 fits for AP 
only and AP + Rm fit respectively. The variability in the 
majority of estimated parameter values was significantly 
reduced by considering Rm. 

 
5. Limitations 

For the results presented here, we chose different time 
points A, B, and C, as shown in Fig. 1 for computing Rm. 
There is a possibility that we could get multiple samples 
from the plateau which would be very similar. If the two 
cells had very different APs, we might end up sampling 
very different states and Rm comparisons might not be as 
meaningful as they could be. To reduce the error, we need 
to adjust the algorithm to the particular APD to ensure 

proper sampling of all states. A better approach may be to 
calculate and fit the membrane resistances at particular 
voltage points instead of time points to make are sure to 
get different distributions of conducting ionic channels. 
When a particular channel is more active during a certain 
phase and contributes a large portion of the membrane 
conductance, this provides more information to the GA to 
help fit its absolute magnitude. 

 
Acknowledgements 

Authors are supported by Natural Science and 
Engineering Research Council of Canada, and a 
Chancellor's challenge Graduate Scholarship, Faculty of 
Graduate Studies scholarship and Queen Elizabeth II 
Graduate Scholarship. 

. 
References 

[1] Dokos S, Novell L. A curvilinear gradient path method for 
optimization of biological systems models. In: Proceedings 
of the 5th IFAC Symposium on modelling and control in 
Biomedical Systems 2003; 1-5. 

[2] Beeler GW, Reuter H. Reconstruction of the action 
potential of ventricular myocardial fibres. Journal of 
Physiology 1977; 268: 177–210. 

[3] Dokos S, Lovell N.  Parameter estimation in cardiac ionic 
models. Progress in Biophysics and Molecular Biology 
2004; 85: 407–431. 

[4] Syed Z, Vigmond E, Nattel S, Leon LJ. Atrial cell action 
potential parameter fitting using genetic algorithms. 
Medical and Biological Engineering and Computing 2005; 
43: 561–571. 

[5] Nygren A, Fiset C, et al. Mathematical model of an adult 
human atrial cell: the role of K+ currents in repolarization. 
Circulation Research 1998; 82: 63–81. 

[6] Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms 
underlying human atrial action potential properties: insights 
from a mathematical model. The American Journal of 
Physiology 1998;275:373, H301–321. 

[7] Deb K, Multi-Objective Optimization using Evolutionary 
Algorithms. England: John Wiley and Sons; 2001:1-491. 

[8] ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV. A 
model for human ventricular tissue, Am J Physiol Heart 
Circ Physiol 2004; 286 : H1573–H1589. 

[9] Sarkar AX, Sobie E. Regression analysis for constraining 
free parameters in electrophysiological models of cardiac 
cells. PLoS computational biology 6: e1000914, 2010. 

[10] Iyer V, Mazhari R, Winslow RL, A computational model of 
the human left-ventricular epicardial myocyte. Biophysical 
Journal 87, 2004: 1507–1525. 

 
Address for correspondence 
Jaspreet Kaur 
Department of Electrical & Computer Engineering 
2500 University Drive, NW 
Calgary AB, T2N 1N4 Canada 
jakaur@ucalgary.ca 

212




