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Abstract 

Cardiac fibrillatory dynamics are identified with spiral 
waves in mathematical modeling of cardiac electrical 
propagation. Automatic identification of spiral wave 
dynamics is essential for patient specific cardiac 
modeling. 

In our work we used normalized compression distance 
(NCD), an information theoretical distance measure, in 
order to cluster the simulated spiral waves as stable, 
meandering and break up. Different representation of the 
data was introduced to NCD in the form of raw time 
series, fast Fourier transform (FFT), feature 
summarization and symbolic quantization of the 
simulated electrograms. Clustering was done in an 
unsupervised way using spectral method. Clustering 
analysis was performed using different validation 
methods. Gap statistics was used to find optimal number 
of groups. Jaccard coefficient was used in order to 
evaluate accuracy of clustering. 

We had a perfect evaluation results from the raw data 
representation and Fourier transformation  with a 
jaccard index of 1, and a very good performance of 
feature summarization with a jaccard index of 0.98. 

1. Introduction

Cardiac arrhythmias are one of the most common 
cause of morbidity in overall globe [1]. Fibrillation, a 
certain type cardiac arrhythmia, is identified with one or 
many rotating waves and vortices with higher frequency 
than observed in normal sinusoidal rhythm. Spiral waves 
play important role to represent fibrillatory mechanism 
observed both experimental and numerical studies [2]. 

As a matter of fact, defining detailed arrhythmia 
dynamics in cardiac tissue is extremely difficult in the 
mesoscopic scale. Hence, there is not much study 
addressing this issue. A classification study was 
previously done on real intracardiac bipolar electrograms 
data obtained from patients using Jeffries–Matusita 
distance and support vector machine (SVM) classifier 
(Nollo et al, 2008). Classification was based on type I, 

type II, and type III AF according to Wells' criteria on the 
certain intracardiac electrogram pattern and morphology 
(Wells et al.1978).   

We used an information theoretical distance measure 
NCD [3] in different representations of simulated 
electrograms. In this sense, we used raw electrograms as a 
time series form. We then used both higher level 
representation which is fast fourier transformation and 
lower level representation which is feature summarized 
form of the electrograms. Further quantization was made 
by converting feature lists to symbols. Spectral clustering 
was then used to group the data. We used gap statistics to 
find optimal number of groups. Finally, assuming ground 
truth labels for the data, we evaluated the resulting 
clusters with Jaccard similarity coefficient. We obtained 
distinctive groupings for  data representations raw 
electrograms, FFT, and feature summarization. 

2. Methods

2.1. Simulating electrophysiology 

To simulate cardiac electrical activity mono-domain 
reaction-diffusion equation is used and can be read as 

. σ 	    (1) 

Where	  is transmembrane potential,	σ is 
conductivity tensor or scalar diffusion coefficient,	  is 
ionic current density determined by the cardiac model 
used. Unipolar electrograms are computed using a current 
source approximation [6] 
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Where	  is extracellular potential,  is electrode 
location vector,	  is current source location vector,	  is 
extracellular conductivity, and	 	is trans-membrane 
current per unit area of atrial tissue surface.  is also 
defined from mono-domain equation:  

. σ      (3) 

We used minimal resistor model (MRM), a 3 variable 
version of Fenton-Karma model [7], for the ionic part, or 
in other words ODEs part, and finite difference method 
(FDM) for the PDEs part. The temporal step of 0.1 ms 
and spatial step of 0.5 mm was used. Simulation was 
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Figure 1. Simulated arrhythmia examples. a) Meandering 
spiral, b)Spiral breakup, c) Spiral breakup, and d) simulated 

electrograms. Electrogram channels were placed on the 
tissue (circles) in the way to mimic PentaRay catheter 

performed on a 25.6 cm x 25.6 cm 2D grid. The diffusion 
rate or conductivity was assumed homogenous and was 
set to 0.00116 cm/S.  

 
2.2. Normalized compression distance 

The distance measure NCD reads as 

,
, ,

,
                    (4) 

where C(.) is a compression operator, C(x) is the file 
size (in bit length) of the compressed object x and C(x,y) 
is the file size of the concatenated objects x and y. We 
used bzip2 as the compressor which uses the Burrows-
Wheeler algorithm. 

 
2.3. Feature extraction and quantization 

For comparison reasons, the data was presented to the 
distance function NCD in different formats. One of the 
formats is feature representation of the electrograms. For 
this reason, feature extraction hence data preprocessing 
was required. For features, cycle length (CL) and 
electrogram morphology was extracted. 

CL was computed by estimating activation time, or 
spike time, using nonlinear energy operator [8]  

                                    (5) 
The result then was filtered by a low-pass filter and the 

barycenter of  the filtered signal was determined by a 
window and activation time was represented. 

Electrogram morphology was computed same way as 
in [6] by detecting positive and negative deflections and 
then dividing difference of them with total amplitude.   

We further summarized the data  by using symbolic 
representation [9]. For our symbolic representation 

scheme, feature representation, CL and electrogram 
morphology, is replaced piecewise constant (PAA) 
representation as an intermediary step. We followed the 
same method as [10] when converting CL to the symbols 
by first getting CL histogram and from assumption they 
are normally distributed, assigning equiprobable regions 
with using inverse chi-squre distribution. We converted 
electrogram morphology directly by rounding them to the 
nearest tenth. We used 72 printable ascii characters for 
CL and 21 for electrogram morphology. 

With feature and symbolic representation the time 
series of fixed length is reduced to arbitrary length.  

 
2.4. Fourier transform and NCD 

Higher representation of a time series data such as FFT 
and wavelet decomposition provides intrinsic frequency 
information. To get use of this, we introduced FFT of the 
simulated electrograms to NCD. We vertically buffered 
the electrogram from selected channels and performed 
FFT on them. In this case, L2 norm of FFT coefficients 
are used as compressing function C(.) and replaced bzip2. 

 
2.5. Spectral clustering 

Once having a distance matrix, it can be transformed, 
or mapped, to the spectral domain where eigenvector 
analysis can give further information about the data. First, 
data affinity matrix, or item-item similarity matrix, is 
calculated. Affinity matrix is calculated based on the 
distance values between the items and a free scale 
parameter and can be read as 

, /      
After getting affinity matrix, following step were 

followed which is adopted from [11] 
Form spectral representation: 

1. Form the affinity matrix A 
2. Construct D by summing rows of A in diagonals 

of D where: ∑  

3. Form N by symmetric divisive normalization: 
/ /  

4. Find the k largest eigenvectors of N which are 
, . . . ,  and form the matrix , . . . ,     

For clustering: 
5. Cluster into k-means 
6. Assign the labels 

2.6. Cluster analysis 

To measure the cluster validity we used two different 
tools: jaccard index and gap statistics which are external 
and relative criteria respectively.  
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Figure 2. Gap values for different representations of the simulated electrogram data 

 
Jaccard index as an external cluster validity criterion 

compares similarity and diversity between sample sets. It 
measures similarity by dividing the size of intersection 
divided by union of the samples 

,
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                                       (7) 

In our case it measures the similarity between 
preimposed grouping structure and the groupings resulted 
from unsupervised clustering. 

Gap statistic is presented to automatically assign the 
number of clusters by comparing them to random data 
generated by a uniform distribution [12]. The sum of 
distances within each cluster r  

∑ ,, ∈                                    (8) 
The summation of intracluster distances across all k 

clusters is then reads  
∑                                  (9) 

The gap statistic is then the difference between 
intracluster distances of the data and the intracluster 
distances of B randomly generated uniformly distributed 
reference data  

∑ log log         (10) 

The simulation error for generation of B is defined as 
1 1/ 	                              (11) 

where  standard deviation of set B. Then, k is chosen 
as the smallest value for 

1             (12) 
 

3. Results 

In total 128 simulations were performed by changing 
the some of the parameters the MRM and each of them 
simulated a time duration of 10 seconds.  

The simulated behaviors then labeled based on spiral 
wave dynamics such as: stable spiral, meandering spirals, 
and spiral wave breakup or also called as multiple 
wavelets. An example of the three behavior shown in 

Figure 1. In some parameter regimes the simulation was 
unstable and didn't give a meaningful result. Hence, they 
were taken out. Some spirals had a rather bigger tip 
trajectory and walked off the lattice. For practical reasons 
such as to have the electrogram vectors having the same 
size we eliminated them as well. Finally, the data set was 
constituted of 45 simulated spiral behavior 7 of which 
was stable spirals, 30 of which was meandering spirals, 
and remaining 8 of which was spiral wave breakups.  

 
Table 1. Cluster analysis. 
 
Data representation  Jaccard 

index 
(k=3) 

Opt 
k 

sigma 

Raw 
FFT 
CL and Morph 
Sym CL and Sym Morph 
Sym CL 
Sym Morph 

1 
1 
0.98 
0.76 
0.76 
0.93 

3 
5 
3 
3 
3 
3 

0.2 
0.05 
0.23 
0.5 
0.5 
0.25 

 
After implementing NCD on the data, we used spectral 

clustering and gap statistic to calculate optimal number of 
clusters. Except FFT, all representations resulted in 
cluster number of 3 (Figure 2). 

Then we imposed 3 spectral clusters on the data as 
shown in Figure 3. Finally, jaccard index to evaluate the 
cluster quality for each case. Results are summarized in 
Table 1. As we can see, raw electrograms and FFT gave 
perfect clustering. Feature summarization also gave a 
good result. Symbolic representation gave rather poor 
result. When we separately measured CL and electrogram 
morphology in symbolic representation, we saw that 
electrogram morphology is much more informative than 
CL. Using morphology alone almost give enough  
information to cluster data. 
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Figure 3. Spectral clustering results in 3D with imposed cluster number of 3  

4. Discussion and future work 
 

In this study we have tried to show that clustering of 
cardiac arrhythmia dynamics in terms of spiral waves is 
possible using electrogram data. The labels used for data 
clusters are intuitive and in agreement with phenomena of 
arrhythmia mechanisms such as multiple wavelets, 
leading circle and reentrant waves. 

Different representation of the raw electrogram data 
which is in time series format was particularly important 
for compatibility of the data obtained from different 
means of measurements. For instance, for the same CL 
and electrogram morphology sequences an electrogram 
signal obtained from unipolar or monopolar recordings 
can be different.  

Although simulated CLs were electrophysiologically 
realistic, we didn't take into account the conduction 
velocity and wavelength measurements. Given that the 
tissue size was bigger than the real case, the wavelength 
and conduction velocity values is not expected to be 
accurate. However, that doesn't mean the data used in this 
study is not compatible with the real data at all for the 
reason discussed in the previous paragraph.  
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