
Myokit: A Framework for Computational Cellular Electrophysiology

Michael Clerx1,2, Paul GA Volders2, Pieter Collins1

1 Department of Knowledge Engineering, Maastricht University, The Netherlands
2 Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands

Abstract

This paper describes Myokit, an open source framework
for simulation and analysis of models of cellular cardiac
electrophysiology. It is designed to be lightweight, with a
focus on model development and model use. The frame-
work consists of a model definition language and a set
of tools to manipulate models, run simulations and post-
process the results. Single-cell and parallelized multi-cell
simulation engines are provided, as well as import and
export for various formats and tools for sensitivity anal-
ysis. This can provide a valuable addition to the body of
software tools available for computational cellular elec-
trophysiology.

1. Introduction

The electrical behavior of heart muscle cells (cardiomy-
ocytes) is directly responsible for the controlled contrac-
tion of the heart. Changes to these cells’ electrical proper-
ties due to mutations, drug-induced effects or other causes,
lie at the basis of severe cardiac health issues such as Bru-
gada syndrome, long QT syndrome and sudden cardiac
death.

Cell models describe the active and passive ion fluxes
through the cell membrane and keep track of the resulting
changes in membrane potential and ionic concentrations.
Modern models may include ion fluxes between different
areas in a cell, calcium buffering or modulating influences
such as adrenergic stimulation. All of these phenomena
can be captured in a model formulated as a system of ordi-
nary differential equations (ODEs).

This paper introduces Myokit, a software toolkit de-
signed to simplify the use and development of such mod-
els. The software is open source1 and runs on Linux, Apple
and Windows systems. The source files can be downloaded
from [1] along with extensive documentation, a number of
example files and an installation guide for each supported
platform. For windows users, an installation script is pro-
vided.

1The code is licensed under a GNU General Public License.

2. The Modeling Language

Cellular electrophysiology models are commonly im-
plemented using general purpose or numerical languages
such C, C++ or Matlab. An alternative approach is to sep-
arate the implementation from the equations and use a ded-
icated model definition language [2]. This allows re-use of
both models and analysis tools, allows models and tools
to be freely exchanged between researchers and can help
ensure model consistency. A good example of a model
description language is the XML based format CellML
[3]. As of writing, the CellML model repository [4] lists
264 electrophysiological models and various tools can be
downloaded from the website that can be used for car-
diac cellular electrophysiology. The choice for XML en-
sures interoperability with a wide range of existing parsers
and makes CellML highly suitable as an archiving and ex-
change format.

By contrast, Myokit is aimed at model use and devel-
opment. It uses a a plain text, human-writable format that
produces compact, easy to read files. The format is de-
signed to be strict, unambiguous and free of implementa-
tion details, but at the same time easy to read, write and
maintain. Myokit model files can be edited with any text
editor and the provided toolkit can use the files directly to
run simulations and perform other modes of analysis. It is
the authors’ hope that this will provide a valuable comple-
ment to the existing body of software tools used in cardiac
cellular electrophysiology.

2.1. File Structure

Myokit models are stored in plain text files using the
extension mmt. Each file contains a model definition and
a set of realistic initial conditions and may also contain a
pacing protocol and an example experiment. To this end,
the file format is split into a required model segment and
two optional segments protocol and script. The model
segment is discussed in Section 2.2, the other two segments
are described briefly below. The full specification of the
mmt format is given in the online documentation [1].

Myocyte models are typically paced, i.e. driven with

ISSN 2325-8861 Computing in Cardiology 2014; 41:229-232.229

a periodic stimulus, the required strength and duration of
which can vary from model to model. Simulation engines
and exports with support for pacing can use the protocol

section of an mmt file to obtain a suitable pacing protocol.
This segment can also be used to implement non-periodic
inputs, such as a series of voltages for voltage-clamp ex-
periments.

The optional script section can be used to store a
Python script that uses the Myokit API to set up a refer-
ence experiment. It uses the same syntax as an external
script but has access to the magic methods get model()

and get protocol() to read the other parts of the file.

2.2. Model definition syntax

Models are divided into components which contain the
model’s variables. Each variable is defined through a sin-
gle equation. For state variables this is a differential equa-
tion written as dot(x) = ..., for all other variables this
is simply an assignment x = The variables can be
specified in any order.

Within a component, variables can refer to each other
directly, but to access a variable from another component
its fully qualified name component name.variable name

must be used. Variables can define child variables whose
value is only visible to themselves and the child variables’
siblings. This structure allows complex models to be writ-
ten in a clear and structured way.

The syntax in a model definition is deliberately simple:
a new component is started by writing its name between
square brackets and then each following non-indented line
defines a new variable. Meta-data, units and child variables
are written indented, directly below their parent variable2.
The syntax for expressions is similar to C-based languages.
Due to the declarative nature of the language, no flow con-
trol is possible, but conditional expressions are provided
through the function if(<condition>,<then>,<else>).
Any line starting with a hash mark (#) is taken to be a com-
ment.

Units can be specified for any numerical constants ap-
pearing in expressions. Variables can also specify a canon-
ical unit and unit arithmetic is provided so that these can be
checked against the units derived from their expressions.
Meta-data strings can be added to models, components and
variables using the syntax key: value, where key is a
single word property name and value is one or more lines
defining the value.

Interfacing with external components happens through
the binding and labeling of variables. Labeled variables
can be used by simulation engines or other routines to iden-
tify variables with a well defined role. For example, in

2A number of properties: units, labels, bindings and the meta-data
property ”desc” can also be written in a short-hand style directly after
the variable equation

cell models suitable for multi-cellular simulation, the label
membrane potential is used to indicate the variable that
represents the cell’s membrane potential. This is then read
by the simulation engine and used to calculate a diffusion
current. A variable binding is used to indicate that a sim-
ulation engine may replace a variable’s value with an ex-
ternal one, identified by the binding’s name. For example,
the statement t = 0 bind time defines a variable named
t. Its default value is zero, but the bind statement declares
any simulation engine can update its value to reflect the
current simulation time.

A partial example of a model definition for a historically
important model [5] is given below to illustrate the syntax.
Further examples (historical and contemporary) are pro-
vided in the examples section on the Myokit website [1].
[[model]]
name: BR1977
Initial values:
membrane.V = -84.622
ina.m = 0.01
ina.h = 0.99
ina.j = 0.98

[external]
t = 0 bind time
p = 0 bind pace

[membrane]
C = 1 [uF/cmˆ2]
dot(V) = -(1/C) * (I_ion + I_diff + I_stim)

in [mV]
label membrane_potential
desc: Membrane potential (in mV)

I_ion = ik1.IK1 + ix1.Ix1 + ina.INa + isi.Isi
I_diff = 0 bind diffusion_current
I_stim = external.p * amplitude

amplitude = -25 [uA/cmˆ2]

[ina]
use membrane.V as V
gNaBar = 4 [mS/cmˆ2]
gNaC = 0.003 [mS/cmˆ2]
ENa = 50 [mV]
INa = (gNaBar * mˆ3 * h * j + gNaC) * (V - ENa)
dot(m) = alpha * (1 - m) - beta * m

alpha = (V + 47) / (1 - exp(-0.1 * (V + 47)))
beta = 40 * exp(-0.056 * (V + 72))

dot(h) = alpha * (1 - h) - beta * h
alpha = 0.126 * exp(-0.25 * (V + 77))
beta = 1.7 / (1 + exp(-0.082 * (V + 22.5)))

dot(j) = alpha * (1 - j) - beta * j
alpha = 0.055 * exp(-0.25*(V+78)) / (1+exp(-0.2*(V+78)))
beta = 0.3 / (1 + exp(-0.1 * (V + 32)))

As this example shows, the language is considerably
more compact than its XML counterparts and requires very
little code other than the bare model equations.

3. The Myokit Toolbox

This section describes the main tools offered through the
Myokit API. Myokit is written predominantly in Python,
but uses on-the-fly compilation to run performance critical
tasks entirely in C. In addition to the performance bene-
fits, this allows the framework to connect to specialized C
libraries such as the ODE solver CVODE [6] and the par-
allelization library OpenCL [7].

Myokit’s core defines a number of classes implement-
ing models, components, variables and expressions. Mod-
els can be built up programmatically, using the same API

230

exposed to the parser. Once a model is completed, it is
checked for cyclical dependencies and a solvable order for
the equations is determined. Great care is taken at each
step of the process to provide helpful error messages if
needed.

The symbolic form of the model is useful in several
types of analysis. For example, constants like external
ion concentrations can be changed before simulations, but
the same mechanism allows non-constant expressions to
be changed, for example to partially block certain chan-
nels. Methods are provided to check Myokit implementa-
tions against reference ones by evaluating the state vector
derivatives at different points in the state space. Depen-
dencies between components or variables can be evaluated
and graphed and a quick plot of state variable dependen-
cies can be made which shows the shape of the Jacobian.

3.1. Simulations

Single-cell simulation is currently implemented by a
back-end using the ODE solver CVODE [6], which uses
an implicit adaptive multi-step method ideally suited for
stiff ODEs. The simulation is implemented in a C-based
Python module. Results are logged using standard Python
data structures and made available to the user through a
SimulationLog object, which also provides some post-
processing and I/O options. Although the online examples
(and parts of the graphical user interface) use MatplotLib
[8] for visualization, Myokit is not tied to any particular
visualization library.

Multi-cell simulation for one-dimensional fibers or two-
dimensional tissues is implemented using a forward Euler
solver implemented either in plain C or using OpenCL [7]
for parallelization on GPU or multi-core CPU. A graphical
user interface for visualizing time-variant 2D rectangular
data grids is included. The model’s sensitivity to a single
parameter can be investigated using the RangeTester sim-
ulation. This is an uncoupled multi-cell simulation where
each cell is simulated with a different value for the speci-
fied parameter. Finally, a tool is provided to calculate the
Jacobian matrix during simulations, allowing sensitivity
and stability to be investigated.

3.2. Import and Export

Models can be imported from CellML, SBML3 and
ChannelML, data and protocols can be read from Axon
Binary Files. Model definitions can be exported to Matlab,
C (and C++), Python, CUDA, OpenCL and CellML. For
presentation purposes, model equations can be exported to
Latex, HTML or MathML. A complete overview of sup-
ported formats can be found in the online documentation.

3The Systems Biology Markup Language

V
m
 [m

V
]

−100
−75
−50
−25

0
25
50

Time [ms]
0 100 200 300 400 500

Figure 1. A normal action potential (thick line) and
one under conditions of severely reduced external Calcium
concentration (thin line).

3.3. User Interface

Myokit includes a graphical user interface (GUI) to edit
mmt files, run experiments and perform imports and ex-
ports. The GUI also provides some debugging features,
for example graphing variables or showing how they are
evaluated. These functions help reduce the time needed to
(re-)implement models from existing programming code
or published equations. The GUI is not loaded as part of
the framework core, which allows users to choose alterna-
tive graphical or windowing back-ends.

3.4. Examples

The code samples below show how to perform some ba-
sic tasks using Myokit. First, the Myokit library is loaded
and an mmt file is read. Its model, protocol and script are
stored in m, p and x respectively. The model used in the
examples is the 2009 model by Decker et al. [9] and can
be downloaded from the examples section on the website.
Next, a single cell simulation is created and a 500ms simu-
lation is run, storing the logged data in the SimulationLog

object d. The results can be visualized directly or, as in
this example, stored to disk for later processing. Figure 1
shows the simulated action potential.

import myokit
m, p, x = myokit.load(’decker2009.mmt’)
s = myokit.Simulation(m, p)
d = s.run(500)
d.save_csv(’example1.csv’)

Next, we lower the external Calcium concentration by
selecting the variable extra.Cao and replacing its right-
hand-side expression (RHS) with a lower value. To give
the model time to adjust to this new setting, we pre-pace
for 30 beats, and then run one more logged simulation.

m.get(’extra.Cao’).set_rhs(’0.1’)
s = myokit.Simulation(m, p)
s.pre(30000)
d = s.run(500)

To get a more complete picture of the influence of ex-
ternal Calcium on the action potential, we can use the

231

V
m
 [m

V
]

−100
−75
−50
−25

0
25
50

Time [ms]
100 150 200 250 300 350 400

Figure 2. Thirty-five action potentials generated with ex-
ternal Calcium concentrations between 1.8 mmol/L (nor-
mal) and 0.1 mmol/L with steps of 0.05 mmol/L.

0
0.2
0.4
0.6
0.8

1

Vm [mV]
−100−80 −60 −40 −20 0

C
ur

re
nt

 [n
A

/μ
F]

−25
−20
−15
−10

−5
0
5

Vm [mV]
−100 −60 −40 −20 0

Figure 3. Left: The steady-state activation (thick line)
and inactivation (thin line) curves of the model’s Sodium
current. Right: The window current calculated from the
steady state activation and inactivation curves.

RangeTester simulation. In this example, we tested 35 lin-
early spaced values between 0.1 mmol/L and the original
value of 1.8 mmol/L. Results are shown in Figure 2.
n = 35
v = np.linspace(0.1, 1.8, n)
r = myokit.RangeTester(m, p, var=’extra.Cao’, ncells=n)
r.pre(30000, values=v)
d = r.run(500, values=v)

Finally, we present an example without simulations:
Two parameters of Sodium channel activation are retrieved
from the symbolic model representation and converted into
Python functions. These are then used to calculate the
channel’s activation curve. We can use the same process
to find the inactivation curve. Finally, we retrieve the max-
imum conductance Gbar along with the equilibrium poten-
tial ENa and calculate the window current for this channel.
The results are shown in Figure 3.
v = np.linspace(-100, 20)

a = m.get(’ina.m.alpha’).pyfunc(’membrane.V’)
b = m.get(’ina.m.beta’).pyfunc(’membrane.V’)
a_inf = a(v) / (a(v) + b(v))

a = m.get(’ina.h.alpha’).pyfunc(’membrane.V’)
b = m.get(’ina.h.beta’).pyfunc(’membrane.V’)
i_inf = a(v) / (a(v) + b(v))

g = m.get(’ina.Gbar’).rhs().eval()
E = m.get(’nernst.ENa’).rhs().eval()
w = g * (a_inf ** 3) * (i_inf ** 2) * (v - E)

4. Conclusion

In this paper, an open-source software framework for the
creation and analysis of cellular electrophysiological mod-
els was presented. The used model definition language is
human readable and writable and can serve as a comple-
ment to existing archiving or exchange formats. A num-
ber of simulation types are provided, with an easy to use
Python front-end and a fast C-based back-end. The com-
bination of a clear model syntax, a high level API and the
analysis tools provided can serve to reduce model develop-
ment and debugging times, freeing valuable resources for
physiological investigation.

Acknowledgements

The authors would like to thank Dr. Enno de Lange for
our valuable discussions.

References

[1] Myokit website. http://myokit.org/.
[2] Hedley WJ, Nelson MR, Bellivant D, Nielsen PF. A short

introduction to CellML. Philosophical Transactions of the
Royal Society of London Series A Mathematical Physical
and Engineering Sciences 2001;359(1783):1073–1089.

[3] Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nicker-
son DP, Hunter PJ. An overview of CellML 1.1, a biolog-
ical model description language. SIMULATION December
2003;79(12):740–747.

[4] CellML model repository. http://models.cellml.org/.
[5] Beeler GW, Reuter H. Reconstruction of the action poten-

tial of ventricular myocardial fibres. J Physiol June 1977;
268(1):177–210.

[6] Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R,
Shumaker DE, Woodward CS. SUNDIALS: Suite of nonlin-
ear and differential/algebraic equation solvers. ACM Trans
Math Softw September 2005;31(3):363–396.

[7] Stone JE, Gohara D, Shi G. OpenCL: A parallel program-
ming standard for heterogeneous computing systems. Com-
puting in science engineering 2010;12(3):66.

[8] Hunter JD. Matplotlib: A 2D graphics environment. Com-
puting In Science Engineering 2007;9(3):90–95.

[9] Decker KF, Heijman J, Silva JR, Hund TJ, Rudy Y. Prop-
erties and ionic mechanisms of action potential adaptation,
restitution, and accommodation in canine epicardium. Am
J Physiol Heart Circ Physiol April 2009;296(4):H1017–
H1026.

Address for correspondence:

Michael Clerx
Maastricht University
P.O. Box 616, 6200 MD Maastricht, The Netherlands
michael.clerx@maastrichtuniversity.nl

232

