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Abstract 

The cardiovascular (CV) system typically exhibits 
complex dynamical behavior, which is reflected not only 
within a single data channel, but more importantly across 
data channels. Multivariate sample entropy (MSE) has 
been proven as a useful tool to analyze both the within- 
and cross-channel coupled dynamics, providing an insight 
into the underlying system complexity and coupling 
relationship. In this study, the MSE method was used to 
monitor both the univariate and multivariate CV time 
series variability, focusing on identifying the differences 
between normal and congestive heart failure (CHF) 
subjects. Electrocardiogram, phonocardiogram and 
radial artery pressure waveforms were simultaneously 
recorded from 30 normal and 30 CHF subjects to 
determine three CV time series: RR interval, cardiac 
systolic time interval (STI) and pulse transit time (PTT). 
The MSE method was applied to univariate (RR, STI, 
PTT), bivariate (RR & STI, RR & PTT, STI & PTT) and 
trivariate (RR & STI & PTT) time series. The results 
showed that all MSE values in the CHF group were 
significantly lower than for the normal group (all P<0.05, 
except for the univariate PTT series), which indicates that 
the complexity of univariate series decreased and the 
synchronization of multivariate series increased for CHF 
subjects. Moreover, the statistical significance between 
the two subject groups increased from using univariate to 
multivariate time series (with P<0.05 to P<0.001), 
confirming the advantage of multivariate analysis.  

1. Introduction

 Short-term, beat-to-beat cardiovascular (CV) 
variability reflects the dynamic interactions between 
different components of the CV system, as well as the 
interplay between the CV system and neurally mediated 
regulatory mechanisms [1]. Time series analysis of CV 
variability can help our understanding of the underlying 
signal generating mechanisms and detect CV diseases [2, 
3]. There is also an increasing interest in the application 
of CV variability monitoring to improve the clinical 

outcomes [4]. 
Traditional CV variability analysis mainly employed 

univariate time series. This is only applicable if all the 
time series are independent or uncorrelated, which is often 
not the case. However, the human system is very complex 
with different interactions between components [5]. There 
are therefore substantial advantages in simultaneously 
analyzing multivariate time series observed from the CV 
system, especially if there is a large degree of uncertainty 
of the underlying system [6, 7].  

Several multivariate CV time series studies have been 
reported, including evaluation of the differences between 
heart rate variability and blood pressure variability [3], 
between systolic and diastolic interval variability [8], 
between cardiac and respiratory systems [9], and between 
multi-site pulse oximeter data [10]. However, they 
focused only on the interaction between two time series, 
and there is no known study to compare the difference 
between using univariate and multivariate time series. 

The aim of this study was to assess the difference of 
CV variability between normal and congestive heart 
failure (CHF) subjects using both univariate and 
multivariate series. A recently developed multivariate 
sample entropy (MSE) method [6, 7] was used.  

2. Methods

2.1. Subjects 

30 normal (16 male and 14 female) and 30 CHF (21 
male and 9 female) subjects were studied, aged between 
20 and 75 years old. This study obtained a full approval 
from the Clinical Ethics Committee of Qilu Hospitals of 
Shandong University. The investigation conformed to the 
principles in the Declaration of Helsinki.  

The CHF subjects were in classes II-III of the New 
York Heart Association with functional classification 
confirmed by an ultrasonic cardiogram and has a left 
ventricular ejection fraction (LVEF) less than 50%. The 
normal subjects had a LVEF between 58-81% and also 
had normal results with blood lipid, glucose and 
electrocardiogram (ECG) checks. The demographic 
information is given in Table 1. 
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Figure 1. Simultaneously recorded ECG, phonocardiogram (PCG) and radial artery pressure waveforms (RAPW) signals. 
The detected R-wave peaks are denoted as “●”, the first heart sounds produced by the closing of left artroventricular 
valve (bicuspid) and the second sounds produced by the closing of aortic valve are denoted as “▼” and “▲” respectively, 
the foot points of RAPW signals are denoted as “■”. 
 

Table 1. Demographic data for the subjects studied.  Their 
means and standard deviations (SDs) are presented. 
Variables Normal CHF P-values 
Age (year) 56 ± 9 59 ± 8 0.1 
Height (cm) 166 ± 8 168 ± 10 0.5 
Weight (kg) 65 ± 7 67 ± 8 0.4 
HR (beats/min) 67 ± 9 71 ± 11 0.1 
SBP (mmHg) 120 ± 12 123 ± 10 0.5 
DBP (mmHg) 69 ± 10 70 ± 8 0.8 
LVEF (%) 68 ± 5 39 ± 7 <0.001 
HR: heart rate, SBP: systolic blood pressure, DBP: 
diastolic blood pressure, LVEF: left ventricular ejection 
fraction. 

 
2.2.  Experimental procedure 

All the measurements were undertaken in a quiet, 
temperature controlled clinical measurement room (25 ± 
3°C) at Qilu Hospital of Shandong University. Before the 
formal signal recording, each subject lay supine on a 
measurement bed for a 10 min rest period to allow CV 
stabilization. Manual auscultatory systolic and diastolic 
blood pressures (SBP and DBP) were recorded at the 
beginning and end of the signal recording. The average 
SBP and DBP from the two measurements were used as 
reference BPs. The overall means and standard deviations 
(SDs) of SBP and DBP are also given in Table 1. 

Standard limb lead-II ECG, phonocardiogram (PCG) 
and radial artery pressure waveforms (RAPW) were 
simultaneously recorded at a sample rate of 1000 Hz for 
10 min for each subject. Subjects were told to breathe 
regularly and gently during the measurement. Figure 1 
gives a typical example of these signals.  

2.3. Signal processing 

Band-pass Butterworth filters were used for ECG (0.5-
125 Hz), PCG (20-200 Hz) and RAPW (0.05-45 Hz) 
signals respectively. Different feature points of the three 
signals were then identified, as shown in Figure 1. Finally, 
time series of RR interval (between consecutive R-wave 
peaks), cardiac systolic time interval (STI, the interval 
between the first and second heart sounds) and pulse 
transit time (PTT, between the R-wave peak of the ECG 
and the foot of RAPW), were constructed.  Figure 2 gives 
an example of the three constructed time series from a 
normal subject for 300 beats. 
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Figure 2. Example of RR, STI and PTT series from a 
normal subject for 300 beats. 

238



2.4.  Multivariate sample entropy 

MSE method was recently developed from sample 
entropy (SampEn) by Ahmed and Mandic [6, 7]. The 
main steps include: 

(1) For a p-variate time series , 1{ } , 1,2, ,N
k i ix k p   , 

where N is the number of samples in each variate, firstly 
normalize each time series for 1, 2, ,k p  , then form 

the composite delay vector using a composite delay factor 
based on the multivariate embedded reconstruction: 
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2 2
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 where 1 2[ , , , ] p
pM m m m  �  is the embedding vector, 

1 2[ , , , ] p
p     �  the time lag vector, and 

( ) m
mX i  � is the composite delay vector, where 

1
p

kkm m  , 1, 2, ,i N n   and max( ) max( )n M   . 

(2) Define the distance between any two composite 
delay vectors ( )mX i  and ( )mX j  as the maximum norm, 

that is,  

1,2, ,[ ( ), ( )] max ( ( 1) ( 1) )m m l md X i X j x i l x j l     

. 
(3) For a given composite delay vector ( )mX i  and a 

threshold r, count the number of instances iP  where 

[ ( ), ( )]m md X i X j r , j i , then calculate the frequency 

of occurrence, 1( ) ( 1)m
i iB r N n P   , and define a 

global quantity 1
1( ) ( ) ( )N nm m

iiB r N n B r
   . 

(4) Extend the dimensionality of the multivariate delay 
vector in (1) from m to (m+1). This can be performed in p 
different ways, as the system can evolve to any space with 

1 2[ , , , 1, , ]k pM m m m m    ( 1, 2, ,k p  ). Thus, a 

total of ( )p N n   vectors 1
1( ) m

mX i 
  �  are obtained.  

(5) For a given 1 ( )mX i , count the number of instances 

iQ  where 1 1[ ( ), ( )]m md X i X j r   , j i , then calculate 

the frequency of occurrence, 1 1( ) ( ( ) 1)m
i iB r p N n Q    , 

and define ( )1 1 1
1( ) ( ( )) ( )p N nm m

iiB r p N n B r  
   . 

(6) Finally, MSE is defined by 
1MSE( , , , ) ln[ ( ) / ( )]m mM r N B r B r   .          (2) 

MSE is the same as the traditional univariate sample 
entropy when 1p  . In this study, we set 1, 2,3p   to 

respectively measure the MSE values from the univariate, 
bivariate and trivariate time series. The original RR, STI 
and PTT series had the same length of 300N  . The 
other parameters setting are: 2km  and 1k   for 

1, 2, ,k p  , and r  equals 0.15 times the series SD. The 

CV time series used for MSE analysis are summarized as: 
 Univariate: RR, STI and PTT; 
 Bivariate: RR & STI, RR & PTT and STI & PTT; 

 Trivariate: RR & STI & PTT. 
 

2.5.  Statistical analysis 

The overall means and SDs of MSE were obtained 
separately for normal and CHF subjects. The differences 
between the two groups were compared using a student's 
t-test (SPSS 19.0 software package). A value of P<0.05 
was considered statistically significant.  
 
3. Results 

Figure 3 and Table 2 give the MSE results from the 
univariate, bivariate and trivariate time series for both 
normal and CHF groups. All MSE values in the CHF 
group were significant lower than those in the normal 
group (all P<0.05, except for the univariate PTT series 
P=0.49).  

The difference between the two subject groups was 
more statistically significant from multivariate (bivariate 
or trivariate) time series than that from univariate time 
series (with P<0.05 to P<0.001, see Figure 3). 

For both normal and CHF groups the mean MSE 
values decreased from using univariate to multivariate 
time series (Figure 3 and Table 2).  

 

Normal  CHF Normal  CHF Normal  CHF
1

2

3
RR

*

STI

*

PTT

U
ni

va
ri

at
e 

M
SE

(A)

Normal  CHF Normal  CHF Normal  CHF
1

2

3

RR & STI

***

RR & PTT

**

STI & PTT

**

B
iv

ar
ia

te
 M

SE

(B)

Normal  CHF
1

2

3

RR & STI & PTT

***

T
ri

va
ri

at
e 

M
SE

(C)

*

**

***

:   P<0.05

:   P<0.01

:   P<0.001

 
Figure 3. Statistical results of the univariate MSE (A), 
bivariate MSE (B) and trivariate MSE (C) for the normal 
and CHF groups. 

 
4. Discussion 

The decrease of the univariate MSE in the CHF group 

239



confirms the significant complexity loss in RR and STI 
series for CHF subjects. CHF has a loss of cardiac  

Table 2. Results (mean ± SD) and statistical P-values of 
the univariate and multivariate MSE for the two groups. 

Time series Normal CHF P-values 
Univariate    

RR 1.9 ± 0.2 1.6 ± 0.5 <0.05 
STI 2.1 ± 0.4 1.8 ± 0.5 <0.05 
PTT 1.8 ± 0.2 1.7 ± 0.4 0.49 

Bivariate    
RR & STI 1.5 ± 0.2 1.2 ± 0.3 <0.001 
RR & PTT 1.5 ± 0.2 1.2 ± 0.4 <0.01 
STI & PTT 1.7 ± 0.2 1.5 ± 0.4 <0.01 

Trivariate    
RR & STI & PTT 1.3 ± 0.2 1.0 ± 0.3 <0.001 

 
pumping function [11, 12]. Lower STI MSE in the CHF 
group indicates damage of cardiac pumping function. In 
addition, the complexity loss of the RR series is usually 
regarded as the decrease of nerve regulation for the CV 
system. So the lower RR MSE in the CHF group confirms 
dysfunction of nerve regulation with CHF [11, 13]. 
Although the cardiac pumping function (directly reflected 
by index LVEF) has a significant difference between the 
two groups, the blood pressures (SBP and DBP) have no 
significant differences. So from the fact that the PTT 
MSE has no significant difference between the two 
groups, it could be inferred that the complexity of the PTT 
series is more closely related to the arterial function rather 
than cardiac function. The bivariate and trivariate MSE 
values in the CHF group were also significantly lower 
than those in the normal group, indicating that the 
increase of the cross-channel synchronization. 

When using the multivariate (bivariate or trivariate) 
MSE, the statistical significances between the two groups 
increased, confirming that the multivariate analysis could 
give a better understanding of the CV system dynamics [6, 
7]. It is also worth to note that the mean MSE values 
decreased from using univariate to multivariate time 
series for both normal and CHF groups. This is mainly 
due to the constant threshold r of 0.15 times the series SD. 
The series SD will become p  when using p-variate series. 

However, the frequency of vector similarity of p-variate 
series rarely becomes that from the sum value of the 
univariate time series. So the multivariate MSE will 
decrease as the number of channels increase. 

 
5. Conclusion 

This study used the MSE method to analysis both the 
univariate and multivariate CV time series variability and 
to compare the differences between the normal and CHF 
groups. The results indicate that the complexity of 
univariate series decrease and the synchronization of 
multivariate series increase for CHF subjects.  
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