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Abstract 

Automated analysis of sleep apnea based on single-
lead electrocardiogram would make screening and 
diagnosis much more accessible. Over the years, several 
algorithms have been proposed in the literature. In most 
of them, one or several temporal averaging techniques 
are used to improve classifier performance. A 
comprehensive comparison between those techniques 
however has never been published.  

Four different temporal averaging techniques, as well 
as overlapping of segments, were independently assessed 
using a database of 70 night-time recordings, originally 
released for the Computers in Cardiology challenge in 
2000. Classification was performed with an LDA 
classifier. Multiple problem-specific feature sets of 10 
features were selected out of a complete set of 304 using 
a two-step approach.  

Averaging classifier input features over neighboring 
segments led to the highest agreement values on the test 
set, outperforming the best automatic entry during the 
original competition (90.4% vs 89.4%). When combining 
classifier output values, an odd amount of segments 
should be used. Calculating features on larger segments 
(> 1-min) led to the worst results, possibly explained by 
its higher susceptibility to noise. Overlapping of segments 
improved overall agreement by about 1%. 

1. Introduction

Sleep apnea is an under-diagnosed sleep-related 
breathing disorder which has an estimated prevalence of 
4% in men and 2% in women [1]. Clinical diagnosis is 
based on a presence of five or more apneic events per 
hour in combination with excessive day time sleepiness 
that cannot better be explained by other factors. An 
apneic event is currently defined as a clear decrease from 
baseline in breathing volume of at least 10 seconds. This 
decrease can either be more than 50%, or it has to be in 

combination with at least 3% oxygen desaturation and/or 
an arousal from sleep. Apneic events can be obstructive 
(complete or partial obstruction of upper airway with 
surrounding soft tissue) or central (reduced or absent 
breathing effort). Mixed events are a combination of both, 
usually starting as a central event, but continuing as an 
obstructive event once breathing effort is reinitiated [2].  

Current diagnosis is made using polysomnography or 
polygraphy, requiring the use of an extensive amount of 
sensors [3]. Annotation of apneic events is performed 
manually, resulting in large inter- and intra-observer 
variability [4]. Automated analysis based on less 
obtrusive and expensive sensors would reduce costs, 
making diagnosis much more accessible and allowing for 
cost-effective population-wide screening. 

This paper discusses automated analysis of sleep apnea 
based on single-lead electrocardiogram (ECG). More 
specifically, it focuses on the assessment of different 
methodologies to include temporal information, i.e. 
looking both backward and forward in time in order to 
improve classification performance. Many authors have 
used one or several of these techniques to improve their 
classifier’s performance, but a comprehensive comparison 
between them has never been published. 

2. Methodology

The database used in this study was released online at 
PhysioNet on the occasion of a scientific competition 
held during the Computers in Cardiology conference in 
2000 [5]. It contains 70 night-time recordings of single-
lead ECG, simultaneously recorded with full 
polysomnography to provide expert annotations on the 
presence of apneic events according to clinical standards. 
These annotations were transformed by the competition 
organizers to reflect the presence of sleep apnea in 1-
minute segments, leading to the final dataset comprising 
34313 minutes of annotated data, split up in 35 training 
and 35 test nights. 

First, RR interval signals were computed from the 
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ECG signals using Pan-Tompkins [6], while ECG-
Derived Respiration signals were calculated from the 200 
ms median filtered ECG signal by integrating the 
enclosed area underneath the QRS complexes, changing 
under the influence of respiration. Next, for every 1-
minute segment of RR and EDR data, both time and 
frequency domain features were calculated, similarly as in 
[7]. Calculating features on detrended RR and EDR 
signals, as well as on the original traces, and adding 
optional logarithmic transformation and night-specific 
normalisation, lead to a total feature set of 304 features 
per 1-minute segment. 

Classification was performed using Linear 
Discriminant Analysis [8], applying gridsearch in order to 
train its parameters (prior class probability and covariance 
matrix regularization), both having possible values 
between 0 and 1.  

In order to reduce computational cost, complexity and 
noise on the classification result, unique subsets of 
features were selected on the training set as being most 
descriptive for their respective targeted classification 
problems (i.e. the different temporal information 
methodologies). Feature selection was performed in two 
steps. In step one, features having a single-feature 
classification accuracy of Cohen’s kappa [9] smaller than 
0.20 were disregarded from the feature set. In step two, a 
greedy forward selection algorithm extracted 10 features 
based on a maximal Cohen’s kappa criterion.  

To prevent overfitting on the training data, a double 
cross-validation scheme was introduced. The first cross-
validation layer allowed for a robust selection of features, 
splitting up the training set 10 times at random into 2/3 
training data and 1/3 validation data, averaging Cohen’s 
kappa values over these 10 folds. A second similar cross-
validation layer, within the training data from each of the 
10 first cross validation splits, allowed for a robust 
gridsearch optimization of the LDA classifier parameters. 

Four different temporal information methodologies 
(i.e. looking both backward and forward in time in order 
to improve classification performance) were investigated. 
First, feature values were calculated over wider segments 

(> 1-minute) around every 1-minute segment, shifting 
these wider segments with 1-minute steps (WE = window 
extension). Second, feature values were averaged over 
neighbouring segments (FA = feature averaging). Third, 
classifier output values (+1 and -1) were averaged over 
neighbouring segments using majority vote, prioritizing 
+1 (apnea) over -1 (normal) in case of tied results (RA = 
result averaging). Fourth, feature values of both current 
segment as well as neighbouring segments were used as 
input for the classifier (FE = feature extension). The 
amount of neighbouring segments used (looking 
backward and forward), varied between 0 and 4. Five 
different combinations were assessed for every temporal 
information methodology, as visualized in Figure 1.  

Finally, apart from the other four temporal information 
methodologies, the effect of overlapping 1-minute 
segments was investigated by shifting 1-minute segments 
with 30-sec steps instead of 1-minute steps, as visualized 
in Figure 2. This to prevent misdetection of apneic events 
situated at the boundary between two segments. Classifier 
output values of these three overlapping segments were 
averaged by majority vote. 

 
3. Results 

Box plots of the 10 fold classification agreement 
values on the training set (left) and agreement values on 
the test set (right) are displayed in Figure 3, for each of 
the four temporal information methodologies and for each 
of the five neighboring segment combinations. Looking at 
the training set results, an overall increase in agreement 
can be seen for all temporal information methodologies 
when the amount of incorporated neighboring segments is 
increased (p < 0.01 on both student t-test and Mann-
Whitney u-test for all methodologies). For the window 
extension method, this increase is however saturated from 
W3 on, while for both the window extension method and 
the result averaging method, an even amount of segments 
(W2, W4) causes a drop in agreement compared to an odd 
amount of segments. Agreement values for the feature 

 

Figure 1. The five combinations of neighboring segments
assessed for every temporal information methodology. 
 

 

Figure 2. Overlapping segments with 30-second shifts. 
 

Table 1. List of the 10 greedy forward selected features 
for standard W1 segments. 

 
# W1(all methods) 
1 log MAD EDR; mean(abs(x-mean)) 
2 EDR relative VLF energy (0.003-0.04 Hz) 
3 RR serial correlation coefficient for k = 3 
4 log MAD RR; mean(abs(x-mean)) 
5 norm 10 percentile of 600 s detrended RR 
6 log EDR relative VLF energy (0.003-0.04 Hz) 
7 RR Fractal Alan factor for k = 10 
8 norm log RR absolute VLF energy (0.003-0.04 Hz) 
9 log RR absolute LF energy (0.04-0.15 Hz) 

10 RR relative VLF energy (0.003-0.04 Hz) 
       log  ln(1+x); norm  (x-median)/mad 
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averaging and feature extension methods are the highest, 
with slightly higher agreement for the feature averaging 
method.   

Looking at the test set, results are similar as on the 
training set, except for the window extension method 
where a drop in agreement can be seen, especially for an 
even amount of segments. Agreement values are again the 
highest for the feature averaging method, reaching as high 
as 90.44% with W5. 

Overall, single-feature classification accuracies (not 
shown) improved the most for result averaging, especially 

for an odd number of segments (with W5, 255 of 304 
features improve), followed by feature averaging (163 of 
304 features), feature extension (149 of 304 features) and 
window extension (137 of 304 features). For the latter 
three, mainly more robust features improved (percentiles, 
frequency content location values, logarithmic transform), 
while others degraded.  

Table 1 lists the 10 selected features for W1. The 
feature sets for W5 are similar in all temporal information 
methodologies, except for the absence of VLF energy 
features in the window extension method, which are 
replaced by more robust frequency location values of 
energy content. Classification agreement values on 
training and test set, with all methods using the same 
feature set W1 instead of their method-specific trained 
versions, show similar trends to those shown in Figure 3. 
Saturation of increasing agreement with amount of 
incorporated neighboring segments is now present 
however from W3 on for all temporal information 
methodologies, leading to slightly lower agreement 
values (about 1% for W3, about 2% for W5).  

The result of the overlapping 1-minute segment 
methodology compared to standard W1 segments is 
shown in figure 4; left the boxplots of the 10 fold 
classification agreement values on the training set, right 
the agreement values on the test set. Overlapping of 
segments increases agreement in both training and test set 
by 1%, although the difference between both is not 
significant (p = 0.07 on a student t-test, p = 0.12 on a 
Mann-Whitney u-test). 

 
4. Discussion 

This paper discussed different methodologies to 

   
 

Figure 3. Box plots of the 10 fold classification agreement values on the training set (left) and agreement values on the
test set (right) for each of the four temporal information methodologies (Window Extension, Feature Averaging, Result
Averaging, Feature Extension). The five combinations of neighboring segments assessed (W1 through W5) are plotted
from left to right. 
 

     
 

Figure 4. Box plots of the 10-fold classification
agreement values on the training set (left) and agreement
values on the test set (right) for standard W1 segments
(original) and overlapping 1-minute segments (overlap). 
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include temporal information in a classification procedure 
in order to improve overall performance of the classifier. 
Results on the training and test data show that the feature 
averaging method led to the highest agreement values, 
while the window extension methods led to the worst. 
Agreement values are similar as those reached by 
submitted entries during the scientific Computing in 
Cardiology competition, as reported in [10]. The test set 
result of the feature averaging method (with W5) even 
outperformed the highest results of all automatic 
classifiers submitted during the competition (90.44% vs 
89.4%). While the amount of neighboring segments used 
was limited to four, it seems worthwhile to investigate 
even higher amounts, since in [11] a maximal accuracy 
was reached with a total window size of 7 segments using 
a similar feature averaging approach.  

The worst performance of the window extension 
method can possibly be explained by a higher 
susceptibility to noise. While other methods average out 
noisy features or classifier output over possibly noise-free 
neighboring segments, in the window extension method, 
features of neighboring noise-free segments will also be 
affected. It explains why more robust versions of features 
are preferred when window width increased (up to W5). 
The window extension method also shows the largest 
difference between training and test set agreement, 
indicating higher overfitting and again higher 
susceptibility to noise present in the test set.  

The result averaging and window extension method 
showed drops in agreement when an even amount of 
segments was used. This can be explained by the possible 
ties in output class (+1 or -1) when averaging the 
classifier output over the neighboring segment outputs. 
Since priority is given to +1 (apnea) in these cases, it 
leads to an increased amount of false positives. Given 
priority to -1 (no apnea) would in the same way lead to an 
increased amount of false negatives. For this reason, the 
use of an odd amount of segments should be preferred.  

While overlapping of segments did improve overall 
agreement slightly, it suffers from the same problem as 
described in the paragraph above. The final segment 
output needs to be calculated by averaging over three 
classifier output values (one from the segment itself, and 
two from the left and right overlapping segments). This 
can again lead to the introduction of false positives when 
neighboring segments both contain apnea but the middle 
one does not. However, since apneic events are mostly 
occurring in a repetitive pattern [2], the amount of false 
positives introduced this way is limited. 

Future work will consist of improving the calculation 
of the RR interval and EDR signals by applying more 
robust methodologies (e.g. kPCA for EDR calculation 
[12]), using the LDA-based extracted feature sets in a 
more versatile LS-SVM classifier [13], and increasing the 
amount of neighboring segments as mentioned earlier. 
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