






Although the set of generated patterns was extremely 
large, some of the top ranked patterns were significant to 
be ECG and BP signatures, which were used to annotate 
heart beats. The highest ranked ECG and BP sequential 
patterns are listed in Table 4. In this context, earlier 
studies have emphasized the importance of longer 
subsequences in building better models [12]. ECG and BP 
sequential patterns can thus help interpret detect of 
instances of transitions that are positively associated with 
various clinical events.   

 
Table 4. Sequential Pattern examples for ECG and BP  

Physiologic 
Variables 

Sequential Pattern 

ECG 
Pattern 

[7,7,7,5,5,5,5,5,4,3,10,10, 
10,2,2,3,3,4,3,4,5,5,5,6,7] 

  
BP Pattern [6,5,4,4,3,3,3,3,2,2,3,4,5,6,7,8] 

 
Figure 3 provides a visual interpretation of the ECG 

pattern, indicating the interpretive capability of a 
sequence of clinical events. In this context, visual 
depictions of sequential patterns could be extremely 
useful to a clinician, for identifying differences in the 
types of heart beats.   

   
Figure 3. Example of a Top-Ranked Long Range ECG 
Sequential Pattern  

 
4. Conclusion 

In this study, we presented the application of a gap-
constrained sequential pattern mining methodology to 
obtain frequent sub-sequences for annotating heart beat 
segments, using both ECG and BP. Towards this aspect, 
we employed the SAX discretization technique to 
discretize the continuous ECG and BP series into a 
symbolic form. Later, sequential patterns with an 
increased density of symbols were considered as more 
relevant and ranked for predicting heart-beats. As future 
work, more physiological variables may be used in a 
clinical record, for applying the sequential pattern mining 
framework, apart from ECG and BP. Moreover, finding 
relevant patterns from a given list, turns out to be an 
important problem in a clinical context and more suitable 
interestingness measures could be applied. 
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