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Abstract 

Aims: Our aim is to improve the accuracy of existing 
heart beat detection algorithms in order to provide 
reliable heart beat locations in a multi-modal beat 
detection scheme. 

Methods: A rhythm-based algorithm is presented 
which on top of a base beat detection method processes 
the detected beats by rejecting annotations and filling in 
gaps while minimizing a deviation score. A novel beat 
detection method based on rational modelling of ECG 
signals is also presented as a base algorithm. 

Results: The rhythm-correction algorithm applied to 
Sachin Vernekar’s phase II entry was submitted to the 
third phase of the PhysioNet/CinC Challenge 2014 
contest. The algorithm has 99.98% gross and average 
sensitivity and 99.96% gross and average positive 
predictivity compared to 99.92% and 99.94%, 
respectively, of the base algorithm. Due to run-time 
performance problems, the rational algorithm was not 
able to qualify in the contest. 

Conclusions: The rhythm-based method improves the 
results of the base algorithm on the training data set. The 
hidden records are not yet available at the time of writing 
of this paper; therefore we are not able to report the final 
performance of the algorithm. Run-time improvement of 
the rational algorithm remains future work. 

1. Introduction

Heart beat detection algorithms using local, per-beat 
information as a basis of detection are widely used, as 
there is a clear performance advantage in computing 
features based on local signal data. These methods are 
prone to miss or misplace beats due to noisy data even in 
cases where a human inspector could correct the mistakes 
with ease based on neighbouring beats and rhythm. 
Figure 1 shows such a missed beat. In Figure 2 instead of 
two in-rhythm beats a misplaced one is detected. The 
figures 2 and 3 are generated using Sachin Vernekar’s 
second phase solution on the record 133 of the challenge 
training data set. 

Here we propose a method to correct these types of 
errors as a post-processing step built on top of an 
arbitrary base algorithm. 

The paper is organised as follows. Section 2 introduces 
the rhythm-based post-processing method. In addition, 
three particular base algorithms are considered. Section 3 
contains detailed information on a particular base 
algorithm which uses rational modelling of ECG signals. 
In Section 4 the performance of the rhythm correction 
step on top of each of the base algorithms are compared. 
Final conclusions are drawn in Section 5. Section 6 
contains a link to the source code of the algorithm. 

Figure 1. Missed beat. 

Figure 2. Misplaced and missed beats. 

2. Method

The proposed method tries to correct missed and 
misplaced beats in a set of beat locations found by a base 
algorithm. Furthermore, a set of candidate locations are 
considered. The candidate locations influence the 
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performance of the rhythm-based algorithm greatly, since 
any applied correction originates from the candidates. 

The algorithm iterates through the base locations. In 
each iteration the next location is selected, and a few base 
locations after the selected one are considered for 
replacement. These locations are called skipped. The 
algorithm tries to skip zero to N locations, and perform 
the best replacement in a sense described later. 

The interval defined by the active location and the first 
non-skipped one is searched for candidates. According to 
the contest rules the tolerable time difference between a 
detected and a reference beat location is at most 150 ms. 
Therefore, no candidates closer than 150 ms to a non-
skipped location are selected. The maximum number of 
selected candidates is restricted by the constant M. 
Weight values assigned to the candidates determine 
which ones to choose, supposing the allowed number of 
candidates is exceeded. Base algorithms using machine 
learning techniques are able to provide such weights 
naturally. 

All subsets of the selected candidates are evaluated to 
possibly replace the skipped locations. The basis of 
evaluation is a score function which measures how well, 
in terms of rhythm, the candidates fit into the sequence of 
locations in a sliding window preceding and following the 
skipped ones. 

There is a trade-off between run-time performance and 
error detecting capabilities when choosing the constants N 
and M. Based on experimental data, the constants are set 
to 𝑁𝑁 = 𝑀𝑀 = 4. 

 

 
Figure 3. Overview of the rhythm-based algorithm. The 
dash-dotted location in the middle is being skipped and 
replaced by the dashed candidates found in the candidate 
search range. All subsets of the candidates in the search 
range are examined, and the ones with lowest score are 
selected. Since the dashed locations are more in-rhythm, 
the algorithm chooses them instead of the dash-dotted 
location. The small circles mark the location of the 
candidates. 

 

Figure 3 illustrates the algorithm on the misplaced 
location of Figure 2. 

In the following subsections the choice behind the 
particular elements of the algorithm is discussed, namely 
the base algorithm, candidate generation, candidate 
weighting and score function. 

 
2.1. Base algorithm and candidates 

During the course of the PhysioNet/CinC challenge 
2014 contest we considered three particular base 
algorithms. However any beat detection algorithm can be 
augmented by the rhythm-based one. 

Initially the sample entry was used as a base algorithm. 
The candidates were chosen by merging the output 
annotations of the gqrs and wabp functions of the WFDB 
library [1]. Based on the sample entry, blood pressure 
annotations were time-shifted by 200 ms. The weights 
were set to a constant value. 

Our second approach was to try a novel beat detection 
algorithm using rational modelling of ECG signals [2] [3] 
[4] instead of gqrs. The algorithm uses support vector 
machine classification which provides weights to the 
algorithm. The candidates were chosen by lowering the 
acceptance threshold of the SVM classifier and merging 
the results with the time-shifted output of wabp if a blood 
pressure signal is present. This approach had run-time 
performance problems and couldn’t finish in time to be 
qualified in the contest. 

The third version which was submitted to the contest 
uses the phase II solution of Sachin Vernekar. The 
algorithm uses deep learning on top features extracted 
from the ECG and blood pressure signals to find beats. 
The candidates were chosen by finding sufficiently high 
peaks in the estimated probabilities. The probabilities 
were also used as weights. 

 
2.2. Score function 

The score function measures the regularity of the given 
beat locations. The smaller the score, the more in-rhythm 
the locations are. The rhythm-based algorithm tries to 
minimize this function. 

Here, two score functions are considered. Initially the 
standard deviation of the beat-to-beat intervals was used. 
Since standard deviation measures deviation from the 
mean, missed or inserted beat locations can introduce 
outliers to the beat-to-beat intervals, causing the mean to 
shift, erroneously penalizing the regular beat-to-beat 
intervals. To this end an alternative score function is 
applied. The score function uses the unbiased standard 
deviation formula with the mean replaced by the median. 
Given a sequence of beat-to-beat intervals 𝑑𝑑1, … ,𝑑𝑑𝑛𝑛, the 
modified score function is 
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. 

 
Although no significant performance difference can be 

measured on the training data set (see Table 1), the results 
on the hidden data set should be examined before drawing 
a final conclusion, once the data becomes available. 

 
3. QRS detection based on rational 
modelling of ECG signals 

In Section 2.1 three different base algorithms were 
introduced. This section describes the second one based 
on rational modelling of ECG signals briefly. 

Let’s consider the sequence 𝑎𝑎0,𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 , … of 
complex numbers in the open unit disc, i.e. 𝑎𝑎𝑛𝑛 ∈
ℂ, |𝑎𝑎𝑛𝑛| < 1 (𝑛𝑛 ∈ ℕ). The rational functions 
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are called Malmquist-Takenaka functions (see e.g. [5] 
[6]). These functions form an orthogonal system with 
respect to the scalar product 
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where the functions 𝑓𝑓 and 𝑔𝑔 are square integrable on the 
complex unit circle. 

QRS complexes of ECG signals can be approximated 
using Fourier partial sums with respect to the system (𝛷𝛷𝑛𝑛 ,
𝑛𝑛 ∈ ℕ): 

 

𝑓𝑓(𝑧𝑧) =  �〈𝑓𝑓,𝛷𝛷𝑛𝑛〉 𝛷𝛷𝑛𝑛(𝑧𝑧)
𝑁𝑁

𝑛𝑛=0

 

 
where the complex unit circle is parameterized by 
𝑧𝑧 =  𝑒𝑒𝑖𝑖𝑖𝑖; 𝑑𝑑 ∈ [−𝜋𝜋,𝜋𝜋] is the normalized time variable. 
Figure 5 shows a concrete example of QRS complexes 
approximated by rational functions. 

The parameters (𝑎𝑎0, 𝑎𝑎1, … , 𝑎𝑎𝑁𝑁) make the model very 
general and adaptable. The parameters most suitable to 
the signal are found using numerical optimization. To 
keep the implementation simple and the run-time 
performance manageable, the parameters are constrained 
as follows: let 𝑁𝑁 = 2, 𝑎𝑎0 = 0 and 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎. This way 
the numerical optimizer only has to find 𝑎𝑎. 

Figure 5. Rational approximation of QRS complexes. The 
dashed curves are graphs of Malmquist-Takenaka partial 
sums. 

 
We used the Rational Interpolation and Approximation 

Toolbox (RAIT) [7], which is an open source toolbox for 
Matlab and Octave, for computing the partial sums and 
optimizing the model parameter. 

The rational modelling method introduced above is 
applied to perform ECG-based beat detection. The peaks 
of the ECG signal are selected, and the ECG signal in a 
small neighbourhood of each peak is approximated using 
Malmquist-Takenaka partial sums. The model parameter 
𝑎𝑎 and the coefficients 〈𝑓𝑓,𝛷𝛷𝑛𝑛〉 form a descriptor of the 
peak, and are used as features by an SVM classifier to 
decide if the location is indeed a true beat. To ensure this 
description captures only local information, the ECG 
signal is multiplied by a window function before rational 
modelling. 

The training of the classifier was performed as follows. 
The records of the challenge training data set was divided 
into 60% training set, 20% cross-validation set and 20% 
test set. A set of feature locations was selected for each 
record containing the reference annotations and an equal 
number of random locations. All training and validation 
were based on the features of these locations. Model 
selection was performed by minimization of the error on 
the cross validation set. 

We used the libsvm open source library [8] to train the 
classifier and to perform predictions. 

 
4. Results 

The algorithm submitted to the third phase of the 
PhysioNet/CinC Challenge 2014 contest applies the 
rhythm correction step to the solution using deep learning 
submitted to the second phase of the contest by Sachin 
Vernekar. The entry achieved 78.17% and 89.19% gross 
and average sensitivity, furthermore 74.43% and 71.60% 
gross and average positive predictivity respectively. 

The rhythm correction algorithm was improved since 
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the submission of the aforementioned entry. The results 
presented here reflect the performance of the improved 
one. Since the hidden data set is not publicly available at 
the time of writing of this paper, these results consist of 
measurements taken only on the training data set. 

The performance of the base algorithm without rhythm 
correction and the results of the rhythm-corrected ones 
equipped with each score function discussed in Section 
2.2 are compared in Table 1. 

 
Table 1. The table summarizes the experimental 

results. Columns correspond to the base algorithm. The 
rows contain the number of false positive (FP) and false 
negative (FN) outcomes of the base algorithm without 
and with rhythm-based correction using standard 
deviation and the modified score function. The data set 
has 72413 beat locations in total. 

 

  Sample 
entry Rational Deep 

learning 
Base 
algorithm 

FP 71 46 41 
FN 56 210 60 

Std score FP 18 9 22 
FN 60 107 14 

Modified 
score 

FP 22 9 22 
FN 83 111 12 

 
In case of the sample entry rhythm correction can 

eliminate about 75% of false positive beats; however the 
number of false negatives is increased. The standard 
deviation score performs considerably better here. 

The algorithm based on rational functions clearly 
benefits from post processing step; the number of false 
positives and false negatives are reduced by 80% and 
nearly 50% respectively. 

In case Sachin Vernekar’s algorithm, the post-
processing step corrects close to 50% of false positives 
and about 80% of false negatives. 

 
5. Conclusion 

The rhythm correction post processing step was able to 
increase detection accuracy of other beat detection 
algorithms by considering rhythm. The performance of 
the algorithm depends heavily on the base algorithm and 
the candidate generation method, therefore these 
components should be chosen with care. 

Due to the nature of the algorithm performance can 
severely decrease in the presence of false in-rhythm 
candidates. E.g. in case of arrhythmia, robust candidates 
are required to maintain good results. 

A novel beat detection method based on rational 
modelling of QRS complexes is presented. The issue with 
run-time performance should be addressed in the future. 

 

6. Source code 

The source code of the algorithm can be downloaded 
from gilian.web.elte.hu/cinc2014/rhythm.tar.gz. 
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