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Abstract

The accurate carotid plaques segmentation (CPs-S) is
essential in the ultrasound (US)-guided carotid atheroscle-
rosis diagnosis. In this work, we propose CAPSU: a com-
pletely automated method for CPs-S in US images. The
core of the method is an innovative initialization procedure
that exploits carotid wall motion analysis to automatically
initialize a level-set segmentation algorithm. A strain anal-
ysis is also used to improve the initialization procedure.
CAPSU performance with and without the strain analysis
were evaluated on US data from 8 patients and compared
with manual contouring from an expert sonographer. Re-
sults show the CAPSU effectiveness as accurate and reli-
able tool for fully automated CPs-S in US images.

1. Introduction

Carotid atherosclerosis diagnosis (CA), usually guided
by ultrasound (US) imaging, is based on the assessment of
the stenosis degree due to the presence of carotid plaques
(CPs) and on CPs composition study. Accurate CPs seg-
mentation (CPs-S) is a prerequisite for these evaluations
and it is usually performed manually by experienced sono-
graphers. However, US data characteristics make this task
complicated and extremely operator-dependent. In this
context, the need exists for automated CPs-S methods to
speed up the CPs-S process and increase its reproducibil-
ity. Although some CPs-S methods have been proposed
most of them are not fully automated and the task remains
particularly challenging [1].

It has been shown that the analysis of tissue motion es-
timated from longitudinal carotid US imaging is useful
to understand correlations between the carotid wall (CW)
dynamics and the presence of diseases [1]. Moreover,
CPs motion study has received increasing attention, and
motion-based strain imaging methods have been proposed

to study CPs vulnerability [2, 3].
In this work, we propose CAPSU: a completely auto-

mated method for CPs-S in US images. It is based on
level-set (LS) segmentation, with an innovative initializa-
tion procedure that makes the approach completely user-
independent. Basing on the studies highlighting CWs mo-
tion alterations in presence of diseases, this procedure ex-
ploits the motion analysis of longitudinal carotid US se-
quences, to differentiate image portions belonging to CPs
from ones belonging to CWs or blood, and produce the LS
initialization. Accumulated strain measurements are also
used to improve the CPs/CWs differentiation. Section 2
describes the CAPSU workflow focusing on the innovative
initialization procedure. CAPSU performance are evalu-
ated in section 3. Finally, section 4 concludes the paper.

2. Methodology

2.1. Data collection

2D US longitudinal image sequences of the carotid
artery from 8 patients were acquired using a ULtrasound
Advanced Open Platform for experimental research (ULA-
OP) [4]. The used transducer was a 46 mm, 4 − 13 MHz
linear array (LA523, Esaote s.p.a.). The dataset comprises
subjects of different sex, age and pathological conditions.
Each US sequence consists in a cineloop of the carotid
artery of about 5s with a frame rate of 62.5 fps. For each
patient the acquisition was focused on a specific CP (target
CP). Dataset CPs differ in composition and position in the
carotid artery. US data were acquired after the IQ demod-
ulation stage.

2.2. Overview of the proposed approach

As shown in Figure 1, CAPSU comprises three main
stages. The preprocessing consists in the envelope detec-
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Figure 1: CAPSU workflow.

tion and logarithmic compression of the acquired IQ data.
The resulting frame sequence constitutes the input of the
initialization procedure, that exploits a motion and strain
analysis of the US sequence and image echogenicity to
produce the binary mask constituting the initialization of
a LS segmentation stage.

2.2.1. Segmentation procedure

The active contour segmentation consists in propagat-
ing an interface into the image domain in order to detect a
target object. When a LS formulation is used, the evolv-
ing interface is implicitly represented by the zero LS of a
smooth function. The interface propagation is thus con-
trolled by the implicit function φ (LS function) evolution
according to:

∂φ

∂τ
= F · ‖∇φ‖ (1)

where the speed function (SPF) F (·) describes the evo-
lution and is formally derived by the minimization of an
energy functional that reflects the target object properties.
In literature, several SPFs have been proposed. Among
them region-based models drive the contour evolution by
taking into account the statistical properties of the fore-
ground and background regions. Since these approaches
use global statistics, they may fail when segmenting het-
erogeneous objects. The local region-based approach pro-
posed by Lankton [5] has proven its effectiveness in han-
dling such situations, as it is the case of US images. Fol-
lowing this approach, hereto we used the localized version
of the Yezzi energy functional [6]:
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where the mask function B(·) defines the (circular) neigh-
borhood around x where the local parameter driving the
evolution are estimated [5]. To reduce the LS computa-
tional time, we used the sparse field (SF) LS method pro-
posed by Whitaker [7], that restricts the LS computation on

a one point wide narrow band around the zero LS. When
implementing this method an input binary mask is used to
initialize φ [8].

2.2.2. Initialization procedure

The proposed initialization procedure is based on the ob-
servation that, in a carotid US image sequence, image por-
tions corresponding to CPs or CWs move less and slower
than the ones corresponding to the blood. Thus they can
be considered almost still across the sequence. Moreover,
it has been shown that the presence of both stenosis and
CPs alters the CW motion characteristics [1]. Basing on
these observations our initialization procedure uses a mo-
tion estimation and compensation procedure, based on the
block matching (BM) algorithm, to automatically identify
these almost still regions discarding the others. Then, the
estimated displacement vectors are also used to better dis-
tinguish between regions belonging to the CWs from the
ones belonging to the CPs. Strain measurements can be
also computed from the accumulated displacements to im-
prove this differentiation. Finally, the motion-based proce-
dure outputs are combined with echogenicity information
to produce the binary mask for the LS initialization.

Block Matching-based procedure. Basically, the BM
algorithm applied to a frames pair works as follows: (i) the
current frame is divided into equally sized blocks; (ii) then,
each block is associated with a search region in the refer-
ence frame (usually constrained up to p pixels on all four
sides) where the algorithm searches for the candidate block
that best matches the original one according to a matching
criterion; (iii) the relative distance between the original and
the candidate blocks constitutes the displacement vector
(motion vector) associated to that block. Among the exist-
ing matching criteria and searching techniques, the mean
absolute difference and the exhaustive search technique [9]
were used in this work. To reflect the rectangular shape
of the acquired images (size 128x512), we used blocks of
size 8x32 pixels, while the search parameter p was equal to
7. While in video coding the blocks movement estimation
obtained with the BM is used to compensate motion in the
reference frame, in our procedure this information is used
to keep trace of that blocks that don’t move between two
frames (constant blocks). This operation is repeated for
all frames with a distance of 4 between current and refer-
ence frame. Then, the procedure identifies blocks that have
been found to be constant blocks for the 90% of the total
amount of frames (frozen blocks), and produces an image
where only these blocks are maintained while the others
are discarded (frozen blocks image, see Fig. 2 (b)).

Motion Vectors- & Strain-based processing. This step
of the initialization procedure consists in using the radial
component (normal to the vessel axis) of the MVs associ-
ated to the frozen blocks to further remove some blocks
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from the image, in order to better isolate the CPs from the
CWs. To achieve this goal the mean of the absolute val-
ues and the standard deviation of the MVs radial compo-
nent are computed across the frames, and thresholded to
perform the block selection. Additionally, at this point a
strain-based processing can be performed to allow a bet-
ter CPs/CWs blocks differentiation. In particular, lateral
(parallel to the vessel axis) and radial displacements are
accumulated across the frames. Then, the corresponding
accumulated strains are computed as the gradient of the
accumulated displacements, by using a two point central
difference method. Basically, if local lateral strain is de-
fined by the expression εxx = ∂ux

∂x the corresponding ac-
cumulated strain as defined in this work is given by:

αxx =
∂Vx
∂x

, Vx =
1

n

∑
ux

where Vx denotes the accumulated displacement. Then,
both radial and lateral strains are analyzed and thresholded
to perform a further blocks selection. This selection is
based on experimental observations on the strain patterns
exhibited by CPs and CWs. Examples of these observa-
tions are that high strain was found at the junction between
CPs and the normal vessel or that heterogeneous CPs with
calcified regions exhibits low strain in correspondence of
calcifications and high strain in their neighborhood. Since
dataset CPs differ in composition and position (near and
far wall), to handle different situations, strains associated
to each block are also analyzed w.r.t. their neighbors, and
a further block selection is performed basing on conditions
that allows to identify strain patterns associable to the CPs.

Echogenicity-based processing. Since image blocks
corresponding to regions at the interface between the lu-
men and CWs can be characterized by similar motion char-
acteristics, this step exploits image intensity distribution to
better isolate CPs from the rest of wall. It is based on the
observation that CWs, especially the adventitia, and lumen
are respectively characterized by high- and low-intensity
pixels. At first a median filter is applied to denoise the
frozen blocks image. Then, the intensity profile is com-
puted column-wise to detect pixels in the 90th and 10th
percentile of the distribution. These information are used
to identify the lumen and the adventitia. Finally, basing
on geometrical and morphological considerations, the al-
gorithm differentiates between near and far wall, and re-
moves from them pixels that could belong to CPs calcified
portions. By combining these information with the output
of the previous step, the final binary mask is created.

3. Experiments & results

To evaluate CAPSU performance, without and with the
strain analysis, a comparison with manual contouring from
an expert sonographer was performed. In particular, for

(a)original image (b)BM-based procedure output

(c)final binary mask obtained with-
out the strain computation

(d)final binary mask obtained with
the strain computation

Figure 2: Initialization procedure input and outputs.

each preprocessed US sequence, the sonographer manually
segmented the target CP (see subsection 2.1) on a selected
frame, and this segmentation was used as reference for
method validation. Comparison metrics were the Kappa
Index (KI), Sensitivity (SE), and Specificity (SP) [10]:

KI =2
|C ∩ Cman|
|C|+ |Cman|

SE =
|C ∩ Cman|
|Cman|

SP =

∣∣C̄ ∩ C̄man

∣∣∣∣C̄man

∣∣
where C and Cman respectively indicate the automated
and the manual contour. The complement of the seg-
mented region was computed on the smallest rectangle
containing both the contours [10]. Since the ground truth
is constituted by the manual segmentation of one specific
CP for each image, metrics were computed on the target
CP contour. The BM-based procedure and the SF LS were
developed basing on the open source implementations re-
spectively proposed by Barjatya [9] and Lankton [8]. To
allow a fair comparison the two CAPSU implementations
were launched with the same segmentation parameters.

Figure 2 shows a US sequence frame for a carotid artery
with a CP at the far wall (a), the corresponding BM-based
procedure output (b), and the corresponding final binary
mask produced by the initialization procedure respectively
without (c) and with (d) the strain computation. As it is
shown, in both cases CPs image regions are well detected,
but the strain computation allows discarding more image
blocks that do not belong to the target CP.

Figure 3 shows two different examples (by row) of man-
ual (dashed line) and automated (solid line) CPs-S with (a,
c) and without (b, d) the strain analysis. By considering
figures 3 (a, b) it can be observed that good agreement be-
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Table 1: Quantitative evaluation of CAPSU performance.

segmentation method # of patients KI SE SP
CAPSU with strain 8 77.20% 70.48 % 90.27%

CAPSU without strain 8 71.16% 71.70 % 85.99%

(a)with strain (b)without strain

(c)with strain (d)without strain

Figure 3: Manual (dashed line) and automated (solid line)
CPs-S results for two patients with (a,c) and without (b,d)
the strain analysis.

tween CPs-S methods was achieved both with and without
the strain analysis. In the case in figure 3 (c, d), instead,
the strain analysis introduction allows better CP boundary
delineation by discarding regions at the junction with the
normal vessel, as well as false positive regions.

Table 1 shows the quantitative results of the evaluation.
Namely, the KI, SE and SP values averaged on the whole
set of patients are shown for both CAPSU with (first row)
and without (second row) the strain analysis. Achieved
average KI, SE and SP indicate good agreement between
manual and automated CPs-S in both cases (perfect agree-
ment = 100%). A KI improvement of 8.5% confirms that,
in many cases, the strain analysis introduction allows better
CPs boundaries delineation. Moreover, SP was improved
in the range of 5% and SE was almost maintained. These
results demonstrate the CAPSU effectiveness in achieving
accurate CPs-S. A significant performance improvement
was achieved by introducing the strain analysis. CAPSU
generalization ability was validated by using a dataset with
CPs differing in composition and position.

4. Conclusions

In this work a completely automated method for CPs-S
in US images (CAPSU) was proposed. Its core is an in-

novative initialization procedure that exploits CWs motion
and strain analysis to initialize a LS segmentation with-
out requiring any user intervention. By comparison with
manual contouring CAPSU was shown to be an accurate
and reliable tool for fully automated CPs-S in US images.
The strain induced performance improvement suggest to
use the CAPSU motion and strain analysis procedure for
CPs characterization toward the development of a fully au-
tomated support tool for CA diagnosis.
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