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Abstract 

We propose a new method for QT interval 

measurement which first detects the morphology of the T-

wave and then finds the T-end according to the detected 

morphology. The proposed method has more emphasis on 

detection of the T-wave morphology which helps more 

accurate detection of the T-end and better lead selection 

for QT interval measurement. Six types of T-wave 

morphologies (normal, invert, biphase +-, biphase -+, 

only upward and only downward) have been considered 

and a rule-based algorithm employed to detect the T-

wave morphology by examining the primitive 

components. Followed by the detection of the 

morphology, the T-end is determined as the point on the 

signal that has maximum distance to the line representing 

the last segment of the T-wave.  

The proposed method has been tested against the QT 

database available on Physionet. The mean difference 

between the T-end in the reference annotation and the 

calculated one by our method is 0.9 ms and the standard 

deviation is 18.9 ms. 

1. Introduction

Acute increases in the QT interval can be observed in 

multiple clinical situations. QT prolongation is associated 

with an increased risk of syncope and sudden death from 

torsades de pointes (Tdp) ventricular tachycardia. Tdp can 

degenerate into ventricular fibrillation, leading to sudden 

death [1]. QT interval of the patients in these cases should 

be monitored periodically for possible prolongation. 

Current measurement techniques rely on manual or 

semi- manual methods by health care professionals either 

with calipers on a printed ECG strip, or utilizing a caliper 

function on a digital waveform display. However manual 

or semi-manual QT measurement is time consuming and 

automatic and continuous measurement of the QT interval 

in ECG monitors is highly valuable to complement the 

sporadic manual measurements. 

Several methods have been proposed for automatic 

measurement of the QT interval [2][5]. Some of the main 

challenges for all methods include accurate detection of 

the T-wave morphology and determination of the end of 

the T-wave which has a slow transition toward iso-

electric segment. On top of these challenges the algorithm 

should have low computational complexity in order to be 

implemented in patient monitors.  

Accurate detection of the T-wave morphology is the 

key to have a valid T-wave end determination. Knowing 

the T-wave morphology helps the algorithm to look for 

the T-end in the right part of the T-wave. In addition, 

different T-wave morphologies may need a different 

algorithm for T-wave end determination. Martinez et al. 

[2] proposed a method for QT measurement by 

categorizing the T-wave morphology into six different 

types: normal, invert, biphase +-, biphase -+, only upward 

and only downward. In this work we use similar 

categories for T-wave morphology.  

In general, algorithm development for detection and 

delineation of the ECG wave components involves a lot 

of thresholdings and search windows on the signal and its 

derivatives which resembles the story of “The Elephant in 

a Dark Room” by Rumi. Despite these difficulties this 

task is quite easy for human mind even for a minimally 

trained person. The proposed method in this paper is a 

preliminary attempt to address this problem by processing 

the signal in different level of abstraction [4] and frame-

based representation of the signal followed by syntactic 

pattern recognition [3]. At the same time we keep in mind 

that the proposed method has to be simple to be able to 

implement it in patient monitors. 

2. Method

To determine the T-wave end we first detect the QRS 

complex using our algorithm developed based on Pan-

Tompkins method [6]. Different wave components are 

then analyzed in the interval from QRS offset of each 

beat to the QRS onset of the next one. To analyze the 

wave components we represent the signal in different 

levels of abstraction [4]. In the lowest level the signal is 

represented by the signal samples. In the next level the 

signal is represented by its characteristic points 

(maximum, minimum and deflection points). Finally in 

the highest level the signal is represented by its 

components (P, T and F waves). This method of 

implementation is more efficient than direct analysis of 

the ECG samples and it makes the maintenance of the 

algorithm easier. In what follows different steps toward 

T-wave end determination is explained. 
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Figure 1. T-wave morphologies 

 

a) Signal Preprocessing: Lowpass and highpass filters 

are used to decrease the high frequency noise and 

baseline wandering of the ECG signal prior to 

implementation of other steps. It is crucial to use filters 

with linear phases in order to prevent phase distortion 

from altering various wave properties of the cardiac 

cycle. The cutoff frequencies of the lowpass and highpass 

filters in the current implementation are 1Hz and 25Hz 

respectively. Both filters are second order Butterworth 

and they are applied in the forward and backward 

direction to create zero phase filters. The signal from 

QRS offset of each beat to the QRS onset of the next one 

is then fed to the next step (in the current implementation 

we use the signal from 100ms after the current R wave 

fiducial to 100ms before the next R wave fiducial). 

b) Recognition of Peaks/Valleys: In this step we 

process the raw signal to extract minimum and maximum 

points of the signal. To prevent the algorithm from falling 

into local min/max points, the magnitude of a min/max 

point has to be smaller/bigger than all points in a certain 

window around it. The length of this window depends on 

the frequency range of the signal of interest. Since the 

frequency content of the T wave is generally less than 10 

Hz, the length of the window can be up to 50 samples 

given the sampling frequency of 250Hz. In the current 

implementation the window length is 30 samples. This 

value is chosen heuristically based on the implementation 

of the method on Physionet QT database.  

c) Representation by Primitive Patterns: The 

characteristic points obtained in the previous step are 

connected by straight lines to represent the signal with 

primitive patterns. This decreases the number of 

parameters and makes the processing easier. In this 

implementation we only use line segments to represent 

the signal but other primitive patterns like parabolic 

segment can be used for more accurate representation [3]. 

 

 
Figure 2. Representation of signal with primitive 

patterns 

 

d) Rule based detection of T-Wave and T 

Morphology: The detection of T-wave location and 

morphology are tied together. It is crucial to detect the 

morphology prior to the T-end determination. The goal 

here is to analyze the primitive patterns in order to detect 

different waveform components. In this implementation 

we represent the signal with line segments connecting 

only the minimum and maximum points of the signal and 

do not use the deflection point for the purpose of pattern 

recognition.  We first look for the segment that represents 

the biggest jump, which we call it the main segment 

(MS), in a search window. The beginning and end of the 

search window is 100ms and min(0.7RR,800ms) 

respectively after the R wave fiducial, where RR is the R 

to R interval in which we look for the T-wave. We 

consider this segment as part of the T-wave and then 

examine the neighboring segments to detect the T-wave 

morphology. We refer to the right and left segments of 

MS as right segment (RS) and left segment (LS) 

respectively. In some cases we also need to consider the 

neighboring segments of RS and LS where we use RRS 

and LLS to refer to the right segment of RS and left 

segment of LS. These terms are illustrated in Figure 1 

along with different T-wave morphologies. We also use 

height and derivative of each segment in the decision 

process as well where we term them as the segment label 

without S followed by H for height and D for derivative 

(for example RH and RD represent the height and 

derivative of RS).   

Thus far we have developed symbols to represent the 

signal. We are now ready to generate rules for detecting 

T-wave morphology based on the attributes of the 

segments. We use a set of logics and thresholds based on 

the height and derivative of the T-wave segments to 

detect T-wave morphology. The decision rules are 

illustrated below: 

 
IF LH < 0.3 *MH or (LS not exist) 

    IF RH < 0.2*MH or (RH < 0.5*MH and RSD < MD/4) 

        Only Upward 

    ELSEIF RH < 1.3*MH or (RRS is the last segment)  

        Normal 

    ELSE 
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        IF RRH > 0.3 _ RH and (LS not exist) and (RRH in search win) 

and RRRH < RRH/3  

            Biphase +- 

        ELSE  

            Normal 
ELSEIF (LS exists) 

    IF LH < 0.7*MH 

       IF RH < 0.2*MH or RD < MD/4  

            Invert 
       ELSEIF RH < 0.9*MH  

            Biphase -+ 

       ELSEIF RH < 1.3*MH  

            Normal 

       ELSEIF RRH > 0.3*RH  

            Biphase +- 

       ELSE  

            Normal 

    ELSEIF LH < 1.3*MH 

        IF RH > 0.3MH and RD > MD/4  

            Biphase -+ 

        ELSE  

            Invert 

    ELSE  

            Invert 

 

e) T-end Determination: Recognition of the T-wave 

morphology is the key step toward T-end determination. 

Given the morphology we look for the T-wave end in the 

last segment of the T-wave. We search the signal in the 

last segment of the T-wave to find the farthest point to the 

line segment. The distance of a point on the signal to the 

line is proportional to the vertical distance of that point to 

the line segment (the vertical distance is easier to 

calculate). Figure 3 illustrates this method on a Normal T-

wave. Similar method has also been proposed in [5] for 

T-wave end determination. 

 

 
Figure 3. Method of finding the T-wave end 

 

f) Multi-lead QT analysis: For clinical QT analysis it 

is recommended to measure QT on all leads and choose 

the longest one. QT dispersion across different leads is 

also a useful parameter that needs QT measurement on 

several leads. However because of the presence of noise 

in ECG monitors and also different presentation of the T-

wave morphology in different leads, it is hard to measure 

the QT interval in all leads accurately. Therefore our goal 

here is to exploit multi-lead ECG to improve the accuracy 

of our QT analysis. This is a Data Fusion problem that 

can be done in different levels. Some previous work [5] 

has done this in the signal level by calculating the RMS 

of different leads, although it is not clear what happens to 

the morphology of the RMS signal using this method. In 

our study we fuse the data in the feature level where we 

combine the QT interval measurements according to their 

confidence level. We define the confidence level based on 

the T-wave morphology assuming high confidence level 

for the QT measurements of the leads containing Normal 

or Invert morphology and low confidence level for other 

morphologies. We choose this approach based on the 

performance of our method over the Physionet QT 

database. The logic of the lead combination follows: 

 
IF Lead 1 is Normal/Invert AND Lead 2 is Normal/Invert   
    THEN  QT=(QT1+QT2)/2 

IF Lead 1 is Normal/Invert AND Lead 2 is not Normal/Invert    

    THEN QT=QT1 
IF Lead 1 is not Normal/Invert and Lead 2 is Normal/Invert   

    THEN QT=QT2 

IF Lead 1 is not Normal/Invert AND Lead 2 is not Normal/Invert 
    THEN   QT=(QT1+QT2)/2 

 

3. Results 

The proposed method is applied to QT database [7]. The 

preliminary results show that the T-end determination 

error is -0.9±18.9 ms. The Percentage of records with 

mean < 15ms and std < 30.6 ms is %61 and the 

percentage of records with mean < 30 ms and std < 

30.6ms is %78. This result is comparable to the results 

reported in [2]. 
 

4. Discussions 

We propose a method for determination of the T-wave 

end with the emphasis on detecting the morphology of the 

T-wave. We use frame-based representation of the signal 

in order to decrease the number of parameters and 

hopefully move toward using more global patterns of the 

signal similar to human mind. The proposed method is 

designed to tolerate some level of noise in the signal that 

is normally present in patient monitors. It has also low 

computational complexity suitable for implementation in 

patient monitoring systems.  

 

The current algorithm measures the QT interval for 

each beat while in real application averaging over a 

period of time could improve the results. Also for multi-

lead analysis it would be useful to consider the noise level 

in each lead in addition to the T-wave morphology to 

improve the data fusion result. 
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