
Wave Sequence Based Identification of Sinus Rhythm Beats on a Microcontroller 

Alexander Noack, Rüdiger Poll, Wolf-Joachim Fischer 

Fraunhofer Institute for Photonic Microsystems (IPMS), Dresden, Germany 

Abstract 

Holter recorders are currently changing their typical 
arrhythmia detection focus towards additional ECG 
evaluation objectives like ST-T-segment or heart rate 
variability analysis. Such estimations are only applicable 
when they are related to normal sinus rhythm excitations. 
However, up to now most approaches do not actively 
inquire this question but label every beat normal which is 
not sufficiently pathologic to be identified as abnormal 
beat. 

In this work we propose a real time applicable 
algorithm to identify sinus rhythm beats depending on 
their characteristic wave sequence regularity. 

Identification results are evaluated against the AAMI 
standard conform beat reference annotations in the MIT-
BIH Arrhythmia database (Se=93.52%; +P=90.24%), 
European ST-T-Database (Se=95.09%; +P=99.86%) 
and the MIT-BIH Normal Sinus Rhythm database 
(Se=98.56%; +P=99.65%). 

Additionally we prove the algorithms to be running on 
an ARM Cortex-M3 microprocessor by detailed execution 
time and memory usage evaluation. 

The presented real time applicable algorithm allows 
an active beat by beat identification of sinus rhythm 
excitations to continue with comprehensive evaluations 
which rely on physiological conduction properties. 

1. Introduction

In the last years Holter recorders improved 
significantly in terms of battery lifetime, signal quality 
and computational capabilities. With these new resources 
the classic focus on ventricular arrhythmia detection 
slowly augments towards other long term applications 
like: atrial fibrillation detection for stroke risk 
stratification, ST-T-segment evaluation to detect 
myocardial ischemia, heart rate variability (HRV) 
observation to draw conclusions on the autonomous 
nervous system or calculation of heart rate turbulence 
(HRT) to predict myocardial infarcts. However, these 
methods prerequisite an accurate identification of 
physiological excited sinus rhythm beats to work 
properly. 

Current ECG analysis approaches, which are usually 
searching for arrhythmias tend to label each beat as 
normal which could not be identified as abnormal. An 
inspection if the beat fulfils the requirements of a 
physiological excitation is usually not done. Within this 
study we present an algorithm to actively identify sinus 
rhythm beats on a mobile long term ECG monitoring 
device. 

2. Material and methods

2.1. Evaluation on databases 

To evaluate the algorithms capability to identify 
physiological excited beat deflections in the ECG signal, 
three standard physionet databases are used: the MIT-BIH 
Arrhythmia Database (MITDB) [1], the European-ST-T-
Database (EDB) [2] and the Normal Sinus Rhythm 
database (NSRDB) [3]. All Databases provide reference 
annotations for each dataset, with detailed beat type labels 
according to the AAMI standards [4]. In total more than 
2.5 million beats have been evaluated. 

Evaluation results are stated as sensitivity (Se) and 
positive predictive value (+P) depending on the number 
of true positive (TP), false negative (FN) and false 
positive (FP) beat identifications, as specified in (1) and 
(2). 

ܵ݁ ൌ ܶܲ/ሺܶܲ ൅  ሻ  (1)ܰܨ

൅ܲ ൌ ܶܲ/ሺܶܲ ൅  ሻ  (2)ܲܨ

For QRS detection results these values are well known. 
For the beat identification evaluation a beat is counted as 
TP if the proposed algorithm identifies it as sinus rhythm 
beat (SR) and the corresponding reference annotation is 
labeling it as normally excited beat type as well. 
According to the AAMI beat type scheme [4] these 
annotations are namely: normal (N), left bundle (L), right 
bundle (R) and unspecified bundle branch blocks (B). For 
any other reference they are considered as FP. Beats 
which are identified as non-sinus rhythm but do have a N, 
L, R or B reference type are labeled as FN. 
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2.2. Hardware performance evaluation 

The described algorithms are implemented on an 
AMR Cortex-M3 microcontroller based wearable ECG 
monitoring system. The device records a 3 channel ECG, 
each with a resolution of 12 Bit and a sampling frequency 
of 250 Hz. The signal is filtered with a 0.5-40 Hz band 
pass and then fed into the signal processing chain on the 
microprocessor. [5] 

The processor provides 256 kB of internal read only 
memory (ROM), 52 kB of random access memory 
(RAM) and is running with a reduced core frequency of 
4 MHz due to power constrains on the mobile system. 

To prove the algorithms to be running in real time on 
the low power optimized microprocessor, execution times 
are simulated and compared against the available system 
resources. Since the beat evaluation algorithm will only 
be activated when a beat was detected, execution time 
estimates will be given as total mean to describe the 
overall burden of the system, as maximum value to 
evaluate the influence of peak events and as mean value 
when a specific signal processing block is executed. 

 
3. Signal processing 

Signal evaluation is done using several algorithmic 
blocks, which are coordinated by timestamp variables to 
ensure previous steps to be completed before entering a 
subsequent one. Figure 1 shows an overview of how the 
signal processing blocks are arranged and how they are 
diversified to avoid processing delays. 

In the first block each incoming sample is processed 
with a quadratic spline wavelet transformation (WT) 
down to the 4th decomposition level. The second block 
uses a wavelet modulus maximum pair (MMP) to detect 
QRS-Complexes [6]. When a QRS was detected the 
delineation of the iso level is done. Therefore the first 
position within a window of 40-100 ms before the R 
trigger, where the 3rd and the 4th WT scale X(3,n) and 
X(4,n) fulfill (3) against a preliminary determined 
threshold θiso is considered as iso level fiducial point. 

 
|ܺሺ3, ݊ሻ| ൏ ௜௦௢ߠ 	∧ 	ሺ|ܺሺ3, ݊ሻ| ൅ |ܺሺ4, ݊ሻ|ሻ ൏ 2 ⋅  ௜௦௢ (3)ߠ
 

For P and T wave delineation a similar MMP approach 
as described by Martinez et al. [7] and Rincon [8] is used. 
However, for a more persistent execution on the 
microprocessor several modification have been done: 
bitshift operations are used to substitute multiplications; 
repeated iterations through the same search window are 
avoided by saving relevant extrema for the next 
evaluation step. This reduces execution duration down to 
almost 50%. Also a second evaluation on the 5th scale if 
no fitting modulus maximum pair can be found is not 
implemented. This would not only increase the  

 
Figure 1. Signal processing blocks and their trigger delay 
 
computational costs for the wave delineation, but also for 
the WT block, which is executed for every sample.  

To inspect the QRS morphology a previously 
presented dynamic QRS morphology clustering step is 
used, which will serve as an additional feature to increase 
robustness against signal disturbances. Within this 
clustering step each beat receives a cluster identification 
number (ID) which relates its morphology to previously 
inspected beats of the current dataset. [9] 

Finally the beat identification step is done based on the 
extracted P-wave, iso-level and T-wave fiducial points 
and the morphologic cluster ID the beat received. The 
beat to be analyzed is evaluated within the context of its 
neighboring beats. Therefore the three preceding beats 
and one succeeding beat are compared against the current 
beat in terms of their wave sequence similarities. Within a 
sinus rhythm all sequence features should resemble 
within minimal variations. 

Using table 1 a beat alikeness index (BAI) is calculated 
for each of the available surrounding reference beats. 
Depending on that value the similarity between the 
current beat and the reference beats is classified as  
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Table 1. SR criterions and their value for the BAI. 
 
Criterion  BAI-Value 
Same cluster ID  +1 
Iso-R distance  8 ms +1 
P-R distance  8 ms +1 
R-T distance  8 ms +1 

 
high (BAI3), medium (BAI2) or low (BAI<2). 

The current beat is labeled as SR if at least two high 
similarity beats exist, or all surrounding beats are at least  
at medium similarity level. 

However, since supraventricular beats may still fulfill 
these requirements also the inter beat regularity is 
evaluated. Therefore three rules proposed by 
Tsipouras et al. [10] are used to decide if the current inter 
beat interval RRi is shortened, in which case the beat was 
not labeled as SR. 

 
4. Results 

4.1. Identification performance 

Table 2 shows QRS detection and the sinus rhythm 
identification rates evaluated on MITDB, EDB and 
NSRDB. All datasets were evaluated without any 
exclusion and according to the AAMI protocol which 
ignores the first five minutes of each record to allow the 
algorithms to initialize and adapt to the signal. 

 
Table 2. QRS detection and SR identification results on 
MITDB, EDB and NSRDB. 
 

Database MITDB EDB NSRDB 
Number of beats 91 285 759 878 1 722 008 

QRS detection 
Se in [%] 99.75 99.10 99.88 
+P in [%] 99.92 99.54 99.46 

SR identification 
Se in [%] 93.52 95.09 98.56 
+P in [%] 90.24 99.86 99.65 

 
4.2. Execution times and memory usage 

In table 3 the execution times and specific memory usage 
are listed for each signal processing block. The final row 
shows the total estimated values. It is important to notice 
that the mean block duration actually do not just simply 
sum up for this row. Despite the WT block and the QRS-
Detection block, which are continuously executed, the 
other algorithms are usually not processed at the same 
time. The mean value of the total execution time 
estimation is therefore slightly higher than the sum value  
 

Table 3. Resource usage on the microprocessor 
(4 MHz / 256 kB ROM / 52 kB RAM) 

 
Signal 
processing 
block 

Execution times [ms] Memory [byte] 

Mean Max 
Mean 

burden ROM RAM 
WT 0.24 0.24 0.24 916 2 544 
QRS detect. 0.28 0.88 0.28 13 072 3 136 
Iso detection 0.002 0.70 0.37 1 452 20 
P delineation 0.006 2.23 1.47 

2 332 16 
T delineation 0.01 6.20 3.73 
clustering 0.02 7.60 5.20 5 460 740 
classification 0.01 2.09 1.37 2 732 416 
total 0.65 19.94 - 25 964 6 872 
 
of all block mean values, because the total down time, 
where no signal processing block runs is lower. 

The total maximum value, however, does sum up to 
describe the worst case scenario, assuming all the 
algorithms would be executed consecutively with their 
longest duration value.  

Memory estimations are given for ROM and RAM. 
ROM memory includes code space and constant 
variables, RAM values consist of static and dynamic 
allocated variables. Since P and T delineation are sharing 
the same code, using different thresholds and timing 
variables, only one memory estimation is given for both 
signal processing blocks. 

 
5.  Discussion 

The overall performance of the presented method 
shows very promising results. 

However, the identification results on the MITDB are 
low compared to the other two databases. This shows 
some weaknesses of the proposed solution.  

With each non SR beat within the 4 reference beats, 
the probability to fit the SR requirements for the current 
beat is reduced. The highest possible identification 
performance is therefore not only depending on the 
classification step, but is directly influenced by the QRS 
detection quality as well. Nevertheless, this relation is not 
only applying to false positive QRS detections but also to 
correctly detected abnormal beats. In the MITDB, where 
a lot of abnormal beats are present, this often leads to 
several FN identifications, especially if motion artefacts 
and muscle noise is corrupting the evaluated wavelet 
scales. Under these conditions it is more difficult to find 
high similarity BAI values and with at least one low 
similarity reference beat, the current beat under inspection 
will also not fulfill the SR requirements. The lower Se 
value for the MITDB is therefore reasonable. 

However, the even worse +P value is caused by 
another effect. Dataset 102, 104, 107 and 217 of the 
MITDB are mainly consisting of fusion beats (F). These 
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beats are mostly regular in terms of rhythm, wave 
sequence and beat morphology and are thus labeled as SR 
by the algorithm. These 4 records alone contribute more 
than 6000 FP detections, which corresponds with 
approximately 8% of the total number of found SR beats 
in the MITDB. 

Considering the effect of these two observed problems 
under real application conditions, the outcome of the 
evaluations will not interfere with their intended results. 
If a patient, for example, suffers several arrhythmic 
events an estimation on HRV or a ST-T-segment 
evaluation may not be expedient in that particular 
situation. However, if the patient’s ECG is continuously 
showing an unusual beat morphology, but with a 
repeating wave sequence within a regular rhythm, there is 
no mistake in considering this beat type to be the normal 
and sinus exited deflection of the heart’s potential 
differences. 

Only for an application which aims on precisely 
identifying SR beats between differing beat types, like the 
HRT, the proposed solution may have difficulties in case 
of other additional disturbances. 

The hardware focused part of this study, however, 
shows the applicability under computational restrains. 
With a RAM memory usage of about 7 kB and a request 
for approximately 26 kB of nonvolatile memory the 
proposed algorithm is also portable to other platforms 
than the herein used Cortex-M3 microprocessor. 

Within the presented study the overall mean values 
show, that the implemented algorithms are usually able to 
resolve all calculation in less than one millisecond. This 
leaves a down time of more than 3 ms to set the system to 
low power sleep mode, which has a significant impact on 
the device life time. Of cause this measure is only a rough 
estimation which will vary with the heart rate. As can be 
seen in the mean burden column, these processing steps 
are usually taking more than one millisecond. However, 
except for the morphology clustering they are typically 
resolved before the next sample is ready for processing 
(4 ms for a sampling rate of 250 Hz).  

In the worst case scenario, where all signal processing 
blocks are executed with their maximum duration in a 
row, the computations are still manageable within 20 ms 
(5 samples). Even at a very high beat frequency of 150 
beats per minute the interval between two consecutive 
beats has a duration of 400 ms, which allows these 
calculations to be done 20 times. 

According to these results an input data buffer of at 
least 5 samples will ensure proper data evaluation without 
any difficulties. 

 
6. Conclusion 

Usually ECG analysis algorithms focus on the 
identification of diagnostically relevant pathologies. If a 
 

beat cannot be identified as such an abnormality it will 
typically be labeled as N. This may either happen due to 
the fact, that the algorithm noes not know this pathology, 
or just by misclassification. In any case the correct label 
for such a beat would simply be not sufficiently 
abnormal. However, for applications which analyze the 
changes of the hearts physiological conduction properties 
non SR beats may change their outcome significantly. 

The results of this study show that the proposed 
approach is quite promising to actively confirm SR, 
especially considering the fact that it can be integrated in 
devices with high resource constrains. Additionally to 
applications where a SR is necessary to obtain 
meaningful results, it may also be used to shut down other 
more energy draining processes if sinus rhythm is present 
to increase the battery lifetime of mobile devices. 
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