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Abstract 

There has been recent interest in whether the spatial 
QRS-T angle (SA) can be used in Thorough QT studies to 
serve as a marker for increased risk of torsades de 
pointes. The determination of the SA requires 
vectorcardiographic data. Such data is however seldom 
recorded in monitoring applications. Specifically the 
number and the location of the electrodes, that are 
required when recording the Frank VCG, complicate the 
recording of vectorcardiographic data in monitoring 
applications. An alternative and more practical way for 
obtaining vectorcardiographic data in monitoring 
applications is the utilization of the EASI lead system. A 
previously published set of linear lead transformations 
allows for the derivation of the Frank VCG from the EASI 
lead system. This EASI-derived VCG can be used for the 
determination of an EASI-derived SA (ESA). The 
accuracy of the ESA has, however, not been reported in 
the literature. The aim of this research was the 
quantification of the differences between the ESA and the 
SA. This was achieved using electrocardiographic data 
recorded from 220 healthy subjects. To this end, the 
difference (ESA-SA) between the ESA and the SA was 
calculated for all 220 subjects. This difference was 
subsequently analyzed in order to determine the 
systematic error (mean difference) and the random error 
(span of the Bland- Altman 95% limits of agreement) that 
is made when determining the ESA. The systematic error 
between the SA and the ESA was found to be 11.6° [95% 
confidence interval: 9.8°; 13.40°]. The random error was 
found to be 52.9° [95% confidence interval: 48.44°; 
58.45°]. The findings of this research suggest that both 
systematic and random error can not be overlooked when 
using the ESA as a substitute for the SA. 

1. Introduction

The regulatory authority members of the ‘International 
Conference on Harmonization of Technical Requirements 
for Registration of Pharmaceuticals for Human Use’ 
require that all new drugs with systemic bio-availability 
have to undergo a so called Thorough QT study (TQT) 
[1]. The aim of such a TQT study is the identification of 

non-antiarrhythmic drugs that prolong the cardiac 
repolarization [2].  The heart-rate corrected QT interval 
(QTc) is, in TQT studies, commonly used as a surrogate 
marker for a prolonged cardiac repolarization and an 
associated increased arrhythmic risk of drugs.  However, 
the QTc is widely viewed as a poor surrogate marker for 
increased arrhythmic risk of drugs [3].  This is because 
the QTc is not able to differentiate benign from malignant 
prolongations of the QTc [4].  Using the QTc 
prolongation as a marker for torsades de pointes (TdP) 
risk can therefore lead to the mischaracterization of some 
drugs as leading to an increased risk of TdP. This is 
undesired as this could stop the development of 
potentially useful drugs in an early phase of development 
[1]. Alternative and/or complementary markers for the 
identification of malignant QTc prolongation are 
therefore needed [1, 4, 5].  The vectorcardiographic 
parameter ‘spatial QRS-T angle’ (SA) has recently been 
proposed as a complementary marker for the 
identification of malignant QTc prolongation [4].  The 
utilization of the SA in TQT trials requires the recording 
of vectorcardiographic data.  The requirement of 
vectorcardiographic data conflicts with the frequently 
adopted Holter monitoring strategy in TQT trials [6]. 
This is because the number and the location of the 
electrodes, that are required when recording the Frank 
VCG, complicate the recording of vectorcardiographic 
data in monitoring applications.  An alternative and more 
practical way for obtaining vectorcardiographic data in 
monitoring applications is the utilization of the EASI lead 
system [7].  A previously published set of linear lead 
transformations allows for the derivation of the Frank 
VCG from the EASI lead system [7]. This EASI-derived 
VCG can be used for the determination of an EASI-
derived SA (ESA). The accuracy of the ESA has, 
however, not previously been reported in the literature. 
The aim of this research was the quantification of the 
differences between the ESA and the SA. 

2. Material and methods

2.1. ECG data 

We base our research on 220 body surface potential 
maps (BSPMs).  The BSPMs were recorded from subjects 
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that did not show abnormalities in their surface ECG data.  
Each BSPM contained electrocardiographic data of 120 
leads.  Three of the 120 leads were recorded from 
electrodes placed on the right and left wrist and the left 
ankle (VR, VL and VF respectively).  The remaining 117 
leads were recorded from thoracic electrodes (81 anterior 
and 36 posterior recording sites). A comprehensive 
description of the BSPM data and the recording 
procedure can be found in [8, 9].  A number of 
electrocardiographic leads that were required to conduct 
our research were associated with electrode locations that 
fell between the locations of the 117 thoracic electrodes.  
The electrocardiographic data of such leads was obtained 
using a previously described two-step interpolation 
procedure [10].  First, the 117 lead BSPMs were 
transformed into 352 lead BSPMs.  This was performed 
using a Laplacian 3D interpolation method [11].  The 
location of the 352 thoracic leads corresponded to the 
nodes in the Dalhousie torso [12].  Second, any required 
thoracic leads that were located between the 352 thoracic 
leads were obtained using linear interpolation [13].   

 
2.2. Generation of the Frank VCG 

The potentials at the A, C, E, F, H, I and M electrode 
locations of the Frank lead system [14], were extracted 
from the BSPMs.  The potentials at the Frank electrode 
locations were used to derive the Frank VCG using (1).  

∙ ⋮ . (1) 

Where , , , , , , and   are 1  
vectors that contain  sample values of potentials at the 
Frank electrode locations A to M respectively,  is a 
3 7 matrix of published coefficients [15] that allow for 
a derivation of the Frank VCG using the potentials  to 

, and  is a 3  matrix containing  sample 
values of the three Frank leads X, Y and Z. 

 
2.3. Generation of the EASI-derived VCG 

The three EASI leads ES, AS and AI were extracted 
from the BSPMs.  The three EASI leads were used to 
derive the Frank VCG using (2). 

∙ . (2) 

Where , , and  are 1  vectors that contain 
 sample values of the EASI leads ES, AS and AI 

respectively,  is a 3 3 matrix of published 
coefficients [7, Table 2] that allow for the derivation of 
the EASI-derived VCG using three EASI leads and 

 is a 3  matrix containing  sample values of 
the three EASI-derived VCG leads X, Y and Z. 

2.4. Determination of the spatial QRS-T 
angle 

The SA and the ESA were calculated as detailed in (3) 
to (6). 

∑ . (3) 

∑ . (4) 

∙

∙
. (5) 

∙

∙
. (6) 

Where  is the 3 1 mean vector of ventricular 
depolarization,  denotes the 3 1 mean vector of 
ventricular repolarization,  is the sample index of 
the QRS onset,  denotes the sample index of the J-point, 

 is the sample index associated with the end of the T 
wave,  is a 3  matrix containing  sample 
values of the three VCG leads and ∈ ,  
indicates whether a parameter is derived using the Frank 
lead system or the EASI lead system.   

 

2.5. Performance assessment 

The performance assessment was conducted using the 
differences between ESA and SA.  These differences 
were calculated as detailed in (7). 

∆ . (7) 

Where  and  are vectors that contain the  
and the  values of all subjects in the study population 
and ∆  is a vector that contains the differences between 
the  and the  values of all subjects in the study 
population. 

First, the distribution of the elements in ∆  was 
analysed using a histogram.  Second, the systematic and 
the random error component of the differences between 
ESA and SA were analyzed.  The systematic error was 
quantified as mean [95% confidence intervals (CI)] of the 
elements in ∆ .  We quantified the random error using 
the span of the Bland-Altman (BA) 95% limits of 
agreement [16] as detailed in (8).   

RandomError ∙ . ∙ ∆ . (8) 

Where ∙  denotes the standard deviation and ∆  
is as defined in (7). 

Third, a Breusch-Pagan (BP) test [17] was conducted 
to assess whether the variance of the differences between 
ESA and SA is dependent upon the SA value.  Forth, the 
strength of the linear relationship between ESA and SA 
was quantified using the sample Pearson correlation 
coefficient.  Fifth, we developed a linear model in an 
attempt to reduce the difference between ESA and SA.  
Sixth, the performance of the linear model in reducing the 
differences between ESA and SA was assessed. 
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3. Results 

A histogram that details the distributional character of 
the elements in ∆  is depicted in Figure 1. 

 

Figure 1. Histogram of the elements in ∆  and 
maximum likelihood normal distribution fit of the ∆  
values. 

 

It can be seen from Figure 1 that the histogram of the 
elements in ∆  is well described by a maximum 
likelihood normal distribution fit. 

The analysis of the elements in ∆  found a 
systematic error of 11.6° [95% CI: 9.81°; 13.40°] and a 
random error of 52.97° [95% CI: 48.44°; 58.44°].  Both 
systematic and random error can be seen in the BA plot 
that is depicted in Figure 2. 

 
Figure 2. Bland-Altman plot of the differences 

between ESA and SA over the average angle between 
ESA and SA. 

 
The distribution of the elements in ∆ , that is 

depicted in Figure 2, suggests a constant magnitude of the 
error variance across the codomain 0° 180°  of 
the SA.  The linear dependence of the error variance 
(variance of the difference ESA-SA) from the SA value 
was formally assessed using the BP test.  No evidence p = 
0.25 for a linear relationship between the error variance 
and the SA value was found based upon the BP test.  This 
finding and the distribution of the ∆  values in Figure 2 
indicate that the magnitude of the random error can be 
considered constant across the entire codomain of the SA. 

The scatter plot in Figure 3 depicts the relationship 
between the SA and the ESA. 

 
Figure 3. Scatter plot and least-squares fit linear 

regression line of the relationship between ESA and SA 
based upon data of all subjects in the study population. 

 
The scatter plot in Figure 3 does suggest a linear 

relationship between ESA and SA.  The strength of this 
linear relationship was quantified to be 0.854 [95% CI: 
0.813; 0.886] using the sample Pearson correlation 
coefficient. 

The linear model in (9) was designed to assess whether 
a linear transformation can reduce the magnitude of 
systematic error and random error when estimating the 
SA using the EASI lead system. 

∙ . (9) 

Where  is an estimate of the SA based upon the 
linear transformation of an observed  value,  is the 
intercept and  is the slope of the linear model. 

The model parameters  and  of (9) were derived 
using least-squares linear regression analysis.  The 
conducted regression analysis was performed using the 
data of the study population and 10-fold cross-validation.  
Both the systematic error and the random error based 
upon the SA estimation methods in (6) and in (9) were 
quantified for each of the 10 folds.  The observed error 
magnitudes as well as the linear model parameters of (9) 
are detailed in Table 1.   

 
Table 1. Linear model parameters and error 

magnitudes for ESA and LESA estimates of the SA. 
Parameter  Sample value 95% confidence interval 
Rand. err. ESA-SA [°] 51.99 [43.03; 60.95] 
Rand. err. LESA-SA [°] 46.31 [38.04; 54.57] 
Syst. err. ESA-SA [°] 11.60 [9.90; 13.31] 
Syst. err. LESA-SA [°] -0.014 [-1.81; 1.78] 
b0 [°] 5.41 [4.91; 5.92] 
b1

* 0.761 [0.753; 0.769] 
*dimensionless 

The null hypothesis of identical estimation errors in 
ESA and LESA estimates was assessed using the paired 
two-sample t-test.  This was performed for both the 
systematic error and the random error.  The paired two-
sample t-test indicated a statistically significant difference 
between systematic error p<0.001 and the random error 
p<0.001 of both SA estimation methods.  Both p-values 
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lead to a rejection of the null hypothesis and indicate that 
the LESA estimates are associated with lower systematic 
and random errors when compared to ESA estimates.   

 
4. Discussion 

In this paper we reported on the similarity between the 
SA and the ESA. 

Our findings have shown that the utilization of the 
ESA as a substitute for the SA is associated with both 
random and systematic error.  Further analysis of the 
relationship between SA and ESA has shown that a linear 
regression model can be used to reduce systematic and 
random error.  The utilization of the developed linear 
regression model resulted, however, only in minor 
reduction of the random error from 51.99° [95% CI: 
43.03°; 60.95°] to 46.31° [95% CI: 38.04°; 54.57°].  The 
observed magnitude of the random error raises questions 
about the suitability of the ESA as a substitute for the SA. 

It is necessary to stress that our research has assessed 
the SA estimation performance of the EASI lead system 
using a transformation matrix  that has not been 
optimized for SA monitoring applications.  Further 
research should therefore assess the possibility of 
improving the SA estimation performance of the EASI 
lead system by designing a transformation matrix that is 
optimized for the estimation of the repolarization 
parameter SA. 

The normal limits of the SA variability during baseline 
and during drug arms of TQT trials are, in addition to the 
absolute values of SA and ESA, of potential interest for 
the quantification of repolarization changes.  Further 
research should therefore assess the differences in the 
variability of SA and ESA during baseline and during 
drug arms of TQT trials.   

 
5. Conclusion 

The findings of our research suggest that both 
systematic and random error cannot be overlooked when 
using the ESA as a substitute for the SA.  Especially the 
relatively large random error raises questions about the 
utility of the ESA as a substitute for the SA.   
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