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Abstract

Many methods have been proposed for analysing high
frequency blood pressure or ECG data. We review a re-
cently proposed new approach for analysing such data
based on attractor reconstruction and compare it to heart
rate variability that analyses the beat-to-beat intervals.
Our new approach uses all the available data and so can
detect changes in the shape of the waveform.

1. Introduction

Blood pressure and ECG data can be collected at high
sampling frequency over long periods of time and many
methods have been proposed for analysing this data in or-
der to diagnose a variety of diseases [1]. Early detection of
changes in the data that indicate onset of disease will offer
the opportunity for early clinical intervention that is gen-
erally much more effective than a late intervention. The
key challenge is obtaining a reliable indicator of signifi-
cant changes in complex data.

We have recently proposed a new method for analysing
blood pressure data based on attractor reconstruction. We
briefly review this method and then compare it to some
methods that come under the banner of heart rate vari-
ability (HRV) which analyse beat-to-beat intervals derived
from the data.

2. Review of Attractor Reconstruction
Method

We have recently proposed a new method of analysing
high frequency blood pressure data in order to extract di-
agnostic information from the data. This method, which is
described in [2], consists of four steps.

1. Reconstruct the attractor

We first reconstruct an attractor in a three-dimensional
phase space using Takens’ delay coordinate method [3].
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Thus, if the signal is z(t), we define the two new variables

yit) =zt —71), =z(t) =2z —27)

where 7 > 0 is the time delay. The trajectory can then
be plotted in the three-dimensional (z, y, z) phase space.
A sample of 10 seconds of blood pressure data collected
from a healthy conscious mouse using an implanted ra-
diotelemetry device at 1000Hz is shown in Fig. 1. The
attractor in the three-dimensional phase space for this data
is shown in Fig. 2.

2. Remove baseline variation

One of the problems with analysing blood pressure data
is that the average blood pressure (baseline) varies natu-
rally depending on whether the animal is resting, active,
sleeping, etc., which results in a non-stationary signal.
Many methods have been proposed for eliminating this
baseline wander, see for example the review [4]. In [2], we
proposed a different method for eliminating this variation
from our reconstructed attractor. All of our phase space
variables are derived from the single signal x(¢) and so if
we shift our signal by a constant amount z(t) — z(t) + c,
then we also have a similar shift in the variables y and
z. In the phase space, this shift in the signal implies
that (z(t), y(t), 2(t)) — (z(t) + ¢, y(t) + ¢, 2(t) + ¢) =
(x(t),y(t),z(t)) + ¢(1,1,1). Thus, a constant shift in the
signal results in a shift in the phase space in the direction
of the vector (1,1, 1). To eliminate this effect, we project
our three-dimensional attractor onto a plane perpendicular
to this vector. We do this by defining the new variables

u=S(atyte), v= Vigmy—zz), w= %(w—w
It can be seen from the definition of these variables that a
constant shift in the signal implies that u(¢) — w(t) + ¢ but
that there is no change in the variables v and w. The (v, w)
plane is orthogonal to the vector (1, 1, 1) and projection of
the attractor onto this plane provides a simple method for
eliminating baseline variation in the signal. The projec-
tion of the attractor in the three-dimensional phase space
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Figure 1. Plot of 10 seconds of blood pressure data.
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Figure 2. Plot of the data in the three-dimensional recon-
structed phase space using 7 = 31ms.

in Fig. 2 onto the (v, w) plane is shown in Fig. 3. We note
that the attractor in Fig. 2 is quite messy and has a lot of
movement in the direction of the x = y = z axis, which
is due to the large amount of baseline variation in the data.
However, once this has been eliminated, we obtain a much
more uniform attractor in the (v, w) plane.

3. Construct a density

The next step in our approach is to construct a density
on a uniform grid in the (v, w) plane, since this will be
a more useful representation of the attractor than a blur of
lines in the phase space. The density function derived from
the projected attractor in Fig. 3 is shown in Fig. 4.

We have not yet considered how to choose the time de-
lay 7. Many methods have been proposed for the opti-
mal choice of 7, with minimisation of mutual information
being a popular method [5]. Again, we take a different
approach. We note that the blood pressure data is ap-
proximately (but certainly not exactly) periodic. We have
proved in [2] that if x(¢) is periodic with period 7' then
the trajectory in the (v, w) plane has a threefold rotational
symmetry about the originif 7 = T'/3 or 7 = 27/3. Thus,
for our non-periodic data, we choose 7 to make the attrac-
tor in the (v, w) plane “as symmetric as possible”. To be
more precise, if the density function is given by D(7), then
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Figure 3. Plot of the attractor shown in Fig. 2 projected
onto the (v, w) plane using 7 = 31ms.
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Figure 4. The density generated from the attractor shown
in Fig. 3.

we define D, (7) = D(7) and generate two more density
functions D4 (7) and D3 (7) from the attractor in the (v, w)
plane rotated by 27r/3 and 47 /3 respectively. We then de-
fine

Dy(r) = 5(Di(r) + Da(r) + Ds(r))
We note that D(7) has threefold rotational symmetry by
construction. Moreover, if the original density D(7) also
has threefold symmetry, then D,(7) = D(7). We choose
7 by minimising the “distance” between D,(7) and D(7)
which we define by

S(D(7)) = [ID(7) = Ds(7)]|2
A plot of the symmetry measure S(D(7)) for the attrac-
tor shown in Fig. 3 is given in Fig. 5. From this, it can
be seen that there are two local minima which occur at
7 =31lmsand 7 = 62ms and these correspond to approxi-
mately one third and two thirds of the average period of the
data respectively. Thus, we clearly have an average period
of 93ms. We define 7, to be the value of 7 at the first
minimum of S(D(7)). Note that we have used 7 = 7,4
for the plots in Figs 2,3,4. This approach results in 7
being approximately one third of the average period of the
data, and so we can determine the average period as 37op.
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Figure 5. Plot of the symmetry measure S(D(r)).

4. Generate time traces

The final step of our approach consists of performing
the analysis described above on a time window which
is then moved through the data. The average period
(37opt) and the minimum value of the symmetry measure
(S(D(7opt))) for each window can then be plotted as a
time trace, as shown in Fig. 6, where we have used a win-
dow length of 10s. Many other measures can be derived
from the density for each window, each of which generate
their own time trace, as described in [2].

3. Heart Rate Variability

A common method for analysing blood pressure and
ECG data is to consider heart rate variability (HRV) in
which variation in the length of the beat-to-beat (or RR)
intervals is analysed. The effect of many physiological
conditions can be detected using HRV, such as myocardial
infarction, cardiac arrhythmia and renal failure [1]. We
note that by considering only these intervals, any variation
in the baseline is effectively ignored. However, any varia-
tion in the cycle between the peaks, which relates to both
cardiac and vascular changes, is also ignored.

In order to compare HRV methods with our approach,
we have again used a time window and calculated the
length of the beat-to-beat intervals in that window. The
average interval length was found and the window again
moved through the data to give a time trace. For the data
shown in Fig. 1, the average interval length is 91.08ms,
which is very close to the value of 93ms obtained using our
method. Indeed, it can be seen in Fig. 6 that this average
interval length gives very good agreement with the average
period obtained using our approach described above as the
time window moves through 10 minutes of data.

There are many measures that can be computed from
the beat-to-beat intervals [1]. We have chosen to consider
the Poincaré plot in which the points (RR,,, RR,,11) are
plotted. The perpendicular distances of the points from the
linesy = zandy = —x + 2R,,,, where R,,, is the mean
of the RR intervals, are determined and the standard de-
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Figure 6. Time traces derived from a moving window of
length 10s. Top: Blood pressure data; Second: Average pe-
riod (37opt) (blue), average RR interval length (red); Third:
First minimum of the symmetry measure S(D(7opt));
Fourth: SD1 (blue), SD2 (red); Fifth: SD1/SD2 ratio.

viations of these distances SD1 and SD2 respectively can
then be found. These are used as the semi-minor and semi-
major axes of an ellipse centred on the point (R,,, R.»)
and aligned with the line y = x. The quantities SD1,
SD2 and the ratio SD1/SD2 are used diagnostically [1].
We have computed SD1 and SD2 for each window of data.
The time trace of these measures together with the ratio
SD1/SD2 is also shown in Fig. 6.

4. Comparison of the Two Approaches

High frequency blood pressure data generates large
amounts of data and it is important to extract useful in-
formation from the data. This often involves reducing
the large dataset to a much smaller one for analysis. All
the HRV methods reduce the available data by consider-
ing only the length of the beat-to-beat intervals and then
extracting a variety of measures from this reduced dataset
which can be related to various diseases. The disadvantage
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Figure 7. The density generated from the attractor at time
t = 20m.

of this approach is that all the data regarding the shape of
the waveform is discarded, and it is reasonable to suppose
that there is useful information contained in the waveform
shape that could also be used diagnostically.

Our approach uses all of the available data and extracts
various measures from a time window, which then generate
time traces as the window is moved through the data. This
method will be sensitive both to changes in the beat-to-beat
intervals and to changes in the shape of the waveform and
so may be able to detect significant changes in the data that
HRV cannot.

For our example data shown in Fig. 6 (top), there is a
clear transition in the symmetry measure S(D(7,pt)) be-
tween 13 and 14 minutes. This is due to a significant
change in the structure of the attractor in the (v, w) plane.
The attractor in Fig. 4 is typical when the symmetry mea-
sure is low, and this changes to an attractor similar to that
shown in Fig. 7 when the symmetry measure is high. How-
ever, in the plots of average period/RR intervals, SD1 and
SD2 and the SD1/SD2 ratio, there is no obvious transition
at this point and so the transition that we observe in the
symmetry measure must be due to a change in the shape of
the waveform.

We note that there are sharp transitions in SD1 and SD2
at various points. However, these measures are generally
quite noisy and do not clearly indicate a transition in the
data. Using a longer time window would reduce the noise
in these measures, but may also smooth out any transitions
in the measures.

5. Conclusions

We have described our new approach using attractor re-
construction for analysing blood pressure data and have
compared this with some HRV measures. Our approach
uses all of the data but factors out the baseline variation by
projecting the three-dimensional attractor onto a plane.

One of the strengths of this approach is its simplicity.
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With HRYV, it can be difficult to correctly identify the peaks
in the data as there are sometimes smaller peaks that oc-
cur, particularly as the blood pressure decreases during di-
astole. Many of the algorithms for eliminating baseline
wander are also quite complex [4].

Our method is also very robust. Occasional artifacts in
the data will have little influence on the density from which
measures are derived, and so do not have to be removed.
In contrast, many HRV methods require careful removal
of artifacts and ectopic beats from the data before analysis
[1]. Also, by analysing all the available data, we are able
to detect both cardiac and vascular changes.

While we have analysed blood pressure data, clearly this
approach could also be used to analyse any approximately
periodic signal such as ECG, PPG, respiratory waveform,
etc.

In this work, we have concentrated on just two measures
derived from our projected attractor, namely the average
period and the minimum of the symmetry measure. Our
average period shows excellent agreement with the aver-
age of the RR intervals. A clear transition in the data can
be observed from the symmetry measure and from Figs 4
and 7 we can see that this transition is associated with a
significant change in the variability in the data.

There are many more measures that can be extracted
from our reconstructed attractor and preliminary results in-
dicate that these can be useful for the early detection of
sepsis in mice. The next stage of development for this new
approach is to determine the physiological significance of
the different derivable measures and quantify the early on-
set of various diseases from our collection of time traces
of measures derived from the attractor.
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