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Abstract

Dynamic analysis provides a powerful methodological
framework for characterizing physiological systems. In
particular, complex heartbeat dynamics related to auto-
nomic control mechanisms are known to change at each
moment in time, and complexity measures have been
proven to have prognostic value in both health and dis-
ease. Nevertheless, an instantaneous measure of com-
plexity for cardiovascular time series (or any other series
of stochastic physiological “events™) is still missing. In
this study we introduce a mathematical framework serv-
ing instantaneous complex estimates of heartbeat dynam-
ics to characterize different activities, tasks, and/or patho-
logical states. In particular we propose new definitions
of inhomogeneous point-process approximate and sample
entropy where the discrete events are modeled by proba-
bility density functions characterizing and predicting the
time until the next event occurs as a function of past his-
tory. These definitions are built on our previous work em-
ploying Laguerre expansions of the Wiener-Volterra au-
toregressive terms to account for long-term memory. We
demonstrate an exemplary study on heartbeat data gath-
ered from healthy subjects undergoing postural changes
such as stand-up, slow tilt, and fast tilt. Results show
that instantaneous complexity is able to effectively track
the complex autonomic changes as they are affected by dif-
ferent postural changes.

1. Introduction

Nonlinear cardiovascular dynamics arise from the com-
plex interactions of Autonomic Nervous System (ANS)
signaling on the sinus atrial node [1-5]. Accordingly,
significant changes in nonlinear heartbeat dynamics have
been characterized as occurring in different pathologies or
different cognitive and physical states [6, 7]. These mea-
sures characterize the randomness and regularity of a time
series originated by a dynamical system and, nowadays,
can be computed through computational algorithms such
as approximate entropy (ApEn) [8], and sample entropy
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(SampEn) [9] given finite experimental data [6, 10-12].
Despite the important achievements obtained studying the
ANS-mediated cardiovascular control dynamics through
ApEn and SampEn analysis of R-wave to R-wave (RR)
interval series derived from the ECG [4, 13], these algo-
rithms are not able to characterize the dynamic nature of
the system along time. ApEn and SampEn, in fact, com-
pute a single value given a predetermined time window,
thus providing only an averaged measured of system dy-
namics that is instead evolving at each moment in time.

To overcome these limitations and address the non-
stationary dynamics commonly associated with real bi-
ological processes, we here present two novel measures
of entropy: the Inhomogeneous Point-process Approxi-
mate and Sample Entropy (ipApEn and ipSampEn, re-
spectively). These measures are built on our previous prob-
abilistic framework based on nonlinear inhomogeneous
point processes, through which it is possible to effec-
tively characterize the nonlinear probabilistic generative
mechanism of heartbeat events, while obtaining instanta-
neous estimates of the underlying cardiovascular dynam-
ics even considering short recordings under nonstationary
conditions [6, 12, 14] and without using any interpolation
method. Of note, this model accounts for long-term mem-
ory and high order nonlinearities using a reduced set of
model parameters [6, 12] and it is used to perform instan-
taneous estimates of the phase-space vectors of the RR
series. As detailed in the next section, the ipApEn and
ipSampEn definitions are based on the distance measure
between phase-space vectors as the Kolmogorov-Smirnov
(KS) distance between two probability density functions
(pdfs). As a result, the proposed ipApEn and ipSampEn
indices, when estimated from RR interval series, are able
to provide an instantaneous complexity assessment of the
underlying ANS dynamics. Besides heartbeat data, we re-
mark the general applicability of the the proposed ipApEn
and ipSampEn indices in further heterogeneous stochas-
tic series of events such as milling inserts, neural activity,
geyser geologic events, and gait from short walks [6].
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2. From Point-Process Nonlinear Models
to Instantaneous Entropy Measures

The proposed measures of entropy are built on our pre-
vious Nonlinear AutoRegressive model with Laguerre ex-
pansion (NARL) of the Wiener-\olterra kernel, whose de-
tails are reported in [6,12]. Briefly, assuming history de-
pendence, the NARL point-process model addresses the
pdf of the waiting time t until the next R-wave event oc-
curs through an inverse Gaussian (IG) probability distri-
bution [14]. Since this IG distribution is characterized at
each moment in time, it is possible to obtain an instan-
taneous estimate of urgr(t) at a very fine timescale (with
an arbitrarily small bin size A), which requires no inter-
polation between the arrival times of two beats, therefore
addressing the problem of dealing with unevenly sampled
observations.

The IG instantaneous mean pgrg(t, 74, (1)) is defined
as a combination of present and past R-R intervals based
on the NARL model [6, 12]:

Hrr(t, 74,8 (1) = RRy ) +do(t)+

p 4 q
_Zégl(iJ) i)+ > g, LK) (7)) (1)

i=0j=0

where J# is the history given the past RR intervals, & (t) =
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&o(t) as the shape parameter of the IG distribution, and
li(t7) = 20 01(N) (R, — Ry n_y) is the output
of the Laguerre filters just before time t, ¢i(n) is the
it" Laguerre function, N(t) is the left continuous sample
path of the associated counting process, and go,{g1(i)},
and {g2(i, j)} correspond to the time-varying zero-, first-,
second-order NARL coefficients, respectively [6,12, 15].
The it Laguerre function is defined as follows:
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with (n > 0), is the jth Laguerre function with 0 < o < 1,
which determines the rate of exponential asymptotic de-
cline of these functions, and go,{g1(i)}, and {g2(i, )}
correspond to the time-varying zero-, first-, second-order
NARL coefficients, respectively [6,12, 15].

Therefore, given the original RR interval series, the out-
put of the Laguerre filters is firstly evaluated through the
convolution between the derivative RR series and the La-
guerre functions. Then, the parameters of eq. 1 are esti-
mated to model the first order moment of the 1G probabil-
ity distribution. Moreover, eqg. 1 accounts for long-term
memory and reduced number of parameters needed for the
linear and quadratic functions [6, 15].

We estimate the parameter vector &£(t) using the
Newton-Raphson procedure to compute the local maximum-
likelihood estimate [6] within a sliding time-window of
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W = 90s. Because there is significant overlap between
adjacent local likelihood intervals, we start the Newton-
Raphson procedure at t with the previous local maximum-
likelihood estimate at time t — A. Model goodness-of-fit
is based on the KS tests and associated KS statistics [14],
along with autocorrelation plots testing the independence
of the model-transformed intervals [14].

Instantaneous estimates of ipApEn and ipSampEn mea-
sures are obtained by considering a novel definition of dis-
tance between phase-space vectors embedded within the
standard ApEn and SampEn algorithms [8, 9].

In particular, let us define a distance measure d|.] be-
tween two 1G distributions of two heartbeat events accord-
ing to the KS distance measures, i.e. maximum value of
the absolute difference between two cumulative distribu-
tion functions. For each pair of phase space vectors, which
are defined as x(k) = [Urr (tk), URR (k1) -5 URR (tkim—1)]
in RM of the time series trr(t1), Urr (t2), -, UrR (tn) With
embedding dimension m = 2, let us define CJ'(r(t),t)
as the number of points x(j) such that d[x(k),x(j)] <
r(t)/(N—m+1) Vj, with m and r(t) as the embedding
dimension and time delay of the phase-space, respec-
tively. The time-varying quantity r(t) is instantaneously
expressed as r(t) = 0.20yq,, . Then, the ipApEn(m,r,t)
and ipSampEn(m,r,t) are instantaneously derived follow-
ing the standard ApEn and SampEn algorithms [8, 9],
through the calculation of the normalized term C™(r,t).

Our instantaneous complexity assessment allows for the
possibility of analyzing the proposed measures also in
terms of variability of their evolution along time, which we
refer to as complexity variability . Formally, if we consider
ipApEn(m,r,N) and ipSampEn(m,r,N) as the average
measures of ipApEn(m,r,N,t) and ipSampEn(m,r,N,t)
within the N* data points time window T = [t3,tp, ..., tn<],
then two novel complexity variability measures, Gjpapen
and ojpsampen, refer to the standard deviation of the
ipApEn(m,r,N,t) and ipSampEn(m,r,N,t) series evalu-
ated within T.

3. Results

In this section, given a generic index variable X that can
be associated to an index among ApEn, SampEn, ipApEn,
ipSampEn, Gipapen, and Cipsampen, results are expressed
in terms of inter-subject variability as Median(X) +
MAD(X), where MAD(X) = Median(|X — Median(X)|).

We performed the instantaneous complexity analysis on
RR interval time series recorded from 10 healthy subjects
undergoing a stand-up/tilt-table protocol including six pos-
ture changes per recording session: 2 stand-up, 2 slow-tilt,
and 2 fast-tilt. The posture change order was randomly
chosen. The study, fully described in [14, 16], was con-
ducted at the Massachusetts Institute of Technology (MIT)
General Clinical Research Center (GCRC) and was ap-
proved by the MIT Institutional Review Board and the
GCRC Scientific Advisory Committee.



Table 1.

Results from the experimental dataset related to postural changes. Comparison between standard and novel

indices.
| | Stand-Up | Slow-Tilt | Fast-Tilt |

Supine Upright p-value Supine Upright p-value Supine Upright p-value
ApEn 112240.055 | 0944+0079 | <103 | 116740091 | 0.927+0125 | <1073 | 1.087+0.116 | 09640072 | <0.004
iPAPEn | 0.283+0.069 | 0.256+0.062 | <0.03 | 0.306+0.042 | 0.254+0.035 | <10°° | 0.327+0.063 | 0.256+0.066 | <0.005

Gipapen | 0.06740.014 | 005040011 | <005 | 007140014 | 007240011 ns. 0.069+0.017 | 0.062+0.015 ns.

SampEn | 1.501+0.192 | 1.243+0.245 | <0.025 | 1.495+0.173 | 090040247 | <1073 | 1.320+0.247 | 1.197+0.233 ns.
ipSampEn | 0.283+0.069 | 0.263+0.064 | <0.05 | 0.306+0.048 | 0.251+0.054 | <10°° | 0.327+0.058 | 0.256+0.066 | <0.01

Gipsampen | 0.08440.017 | 0.065:£0.017 ns. 0.081£0.020 | 0.088:0.014 ns. 0.077+0.020 | 0.082-0.012 ns.

p-values from non-parametric Wilcoxon test for paired data with null hypothesis of equal medians

n.s. = not significant

The model orders p =4, g =2, and e = 0.2 were cho-
sen by preliminary KS plot goodness-of-fit analysis [6].
For each index, we evaluated the statistical differences
between the two phases expressed as p-values from the
Wilcoxon non-parametric test for paired data, under the
null hypothesis of equal medians. Tracking results, aligned
and averaged among all subjects for each of the three pos-
tural changes, are shown in Figure 1. Results averaged for
each stage (2 min. supine before postural change vs. 2.
min after postural change) are reported in Table 1. A sig-
nificant statistical difference was found on median ipApEn
and ipSampEn values between the supine stage and each
of the three kind of postural changes (stand-up, slow and
fast tilt), always showing a significant decrease in com-
plexity once the subject is in the upright positions. These
results are in agreement with previous findings [3], provid-
ing further evidence to the observed progressive decrease
of complexity as a function of tilt table inclination, indi-
cating that degree of complexity is highly correlated with
sympathovagal response. Of note, standard ApEn is also
able to discern each of the three postural changes, whereas
SampEn is not able to characterize fast tilt protocols. How-
ever, it is important to notice that these traditional entropy
measures are not able to follow changes in complexity.

Importantly, from our results it is possible to draw
unique insights on specific dynamic signatures of com-
plexity associated with each of the three postural changes
(see Fig. 1). In particular, slow and fast tilts show a more
prominent decrease in entropy, with ipSampEn values os-
cillating around 0.1 once in the upright position. Note that
slow tilt stimuli induce slower recovery increases in en-
tropy starting one minute after complete postural change.
Conversely, standing up brings to a sharp decrease in en-
tropy comparable to the fast-tilt response, but also shows a
faster recovery towards baseline entropy starting right af-
ter posture change. However, in this case the complex-
ity variability measure ojpapen has been found statistically
different between the supine and upright positions related
to the stand-up stages, demonstrating that a time-varying
measure of complexity is critical for characterizing more
subtle posture changes of complex heartbeat dynamics.
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4, Conclusions and Discussion

We have proposed a novel definition of instantaneous
approximate and sample entropy based on the inhomo-
geneous point-process nonlinear models using Laguerre
expansion of the Wiener-Volterra autoregressive terms in
the probability function mean [6, 10]). The ipApEn and
ipSampEn definitions are able to reproduce previous find-
ings achieved using traditional algorithms, while further
ensuring continuous estimates in time without the use of
any interpolation procedure, and providing effective track-
ing of instantaneous system dynamics. Goodness of fit
measures such as KS and autocorrelation plots quantita-
tively allow to verify the model fit and to choose the proper
model order, thus addressing another open issue of cur-
rent parametric approaches. Just like other methods, our
model needs a preliminary calibration phase (e.g., choice
of model order, etc.) before it can be effectively used to
estimate the instantaneous entropy measures.

We have shown that ipApEn and ipSampEn promis-
ingly provide insightful time-varying and adaptive indices
for real-time monitoring of sympathovagal dynamics, in
agreement with the current literature [3]. The proposed
entropy measures also allow for the study of complexity
variability, i.e., the analysis of complex systems referring
to the fluctuations in complexity instead of analysis of cen-
tral tendency, which has been recently explored in disease
assessment of patients with severe congestive heart failure
[10]. A second application of the proposed measures of
entropy is aimed at characterizing mild cognitive impair-
ment in Parkinson’s disease, and is presented in a com-
panion paper within the same CinC proceedings. To con-
clude, the proposed methodology offers a promising math-
ematical tool for the dynamic analysis of a wide range of
applications to potentially study any physical and natural
stochastic discrete process (e.g. [6]).
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Figure 1. Averaged ipSampEn trends during resting and tilting phases. Considering data from all subjects, the plot shows
the Median(X) == MAD(X)).
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