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Abstract 

This paper presents an automatic detection system for 
the classification of phonocardiographic (PCG) signals 
using 4 standard auscultation areas (one of each cardiac 
valve) for heart murmur diagnosis. The database of 4-
area PCG records belongs to the National University of 
Colombia. A set of 50 individuals were labeled as normal, 
while 98 were labeled as exhibiting cardiac murmurs, 
caused by valve disorders. With the help of medical 
experts, 400 representative beats were chosen, 200 
normal and 200 with evidence of cardiac murmur from 4 
different areas of auscultation. First, the PCG signals 
were preprocessed; next, four different derivations of Mel 
Frequency Cepstral Coefficients (MFCC) were extracted. 
Additionally, statistical moments of Hilbert Huang 
Transform (HHT) were estimated using different 
combinations of the signal components by means of 
Empirical Mode Decomposition (EMD), Ensemble EMD 
(EEMD) and Complete EEMD with Adaptative Noise 
(CEEMDAN), independently, where the computational 
complexity were compared. Finally, stochastic analysis of 
the feature space was carried out by an ergodic-HMM 
and the global classification result was around 98% with 
acceptable sensitivity and specificity scores, using a 30-
fold cross-validation procedure (70/30 split). 

1. Introduction

The phonocardiographic (PCG) signals provide 
information about cardiac valve function, from the sound 
caused by blood flow between the atrium and ventricle, 
for detecting heart failures [1]. Commonly, this analysis 
is carried out using only one Standard Auscultation Area 
(SAA). However, in [2] and [3], it was demonstrated that 
the use of the four SAA allows to detect invisible 
murmurs for systems based only on one SAA. 

Initially, taking advantage of the morphological 
changes in the PCG caused by heart murmurs, different 
approaches based on energy and temporal features were 
proposed [4][5]. However, cardiac murmurs have a 

nonstationary nature and exhibit sudden frequency 
changes and transients [6][7]. Other studies have 
considered the nonlinear nature of physiological signals 
in order to improve the training and classification stages 
[5][8], but the increment in processing time becomes a 
big problem for real-time applications. On the other hand, 
several approaches based on wavelets have been proposed 
taking into account the time-frequency disturbances 
associated with cardiac murmurs [9]. However, in 
contrast to approaches based on wavelets, other 
decomposition methods such as the adaptive	 method 
Empirical Mode Decomposition (EMD), introduced	 to	
analyze	 nonstationary	 signals	 [10], and Hilbert-Huang 
Transform (HHT), express the signal as an expansion of 
basis functions which are signal-dependent [11]. These 
techniques have been frequently applied for extraction of 
foetal heart sounds from a recorded single channel 
abdominal PCG [12]. However, EMD  has problems, as 
the presence of inappropriate oscillations [10], which is 
attenuated adding Gauss White Noise (WGN) to 
ensemble the signal by a method named Ensemble 
Empirical Mode Decomposition (EEMD) [13]. 
Nevertheless, EEMD has problems with the residual 
noise and the different number of modes. In this sense, 
different algorithms have been proposed in order to 
overcome these problems, such as: Complete Ensamble 
Empirical Mode Decomposition with Adaptive Noise 
(CEEMDAN) [14]. Another interesting area is related to 
the acoustical disturbances caused by heart murmurs, 
which can be analyzed using the Mel-Frequency Cepstral 
Coefficients (MFCC) [15] [16], but these procedures are 
very sensitive to artifacts or noises frequently involved in 
the acquisition stage [6]. Due to this, the combination of 
MFCC and statistical moments of HHT with appropriate 
EEMD components would be suitable. Likewise, the 
inclusion of stochastic models, such as Hidden Markov 
Models (HMM), have successfully complemented 
procedures for cardiac murmur detection [17].  

In this work, a comparison among EMD, EEMD and 
CEEMDAN techniques was carried out for a 
decomposition of PCG signals, which were used to 
extract features using MFCC, HHT and statistic moments. 

ISSN 2325-8861   Computing in Cardiology 2014; 41:493-496.493



A reduced feature set was achieved using a Fuzzy Rough 
Set (FRS) algorithm and was used as input for a HMM 
classifier in order to provide an objective and accurate 
mechanism to improve the reliability of heart murmur 
detection. 

 
2. Materials and methods 

2.1. Database 

The database is made up of 143 de-identified adult 
subjects, who gave their formal consent, and underwent a 
medical examination with the approval of the ethical 
committee. The valve lesion severity was evaluated by 
cardiologists according to a clinical routine. 55 patients 
were labeled as normal, while 88 had evidence of cardiac 
murmurs. From each patient, 8 recordings were recorded 
according to the four SAA, i.e., mitral, tricuspid, aortic 
and pulmonic areas, in the phase of post-expiratory and 
post-inspiratory apnea. Each recording lasts 8 s and was 
obtained with the patient standing in dorsal decubitus 
position. The signals were acquired at 44.1 kHz with 16-
bits per sample with an electronic stethoscope 
(WelchAllynr Meditron model). Finally, 400 individual 
beats were chosen, 200 normal and 200 with evidence of 
cardiac murmur according to a visual and audible 
inspection by cardiologists.  

 
2.2. Theoretical background 

A. Empirical Mode Decomposition (EMD): This 
method, reported in [18], adaptively decomposes a 
multicomponent signal x(t)	 into a number L of Intrinsic 
Mode Functions (IMFs), ݄ሺ௜ሻሺݐሻ, 1 ൑ ݅ ൑  ,ܮ

 
ሻݐሺݔ ൌ ∑݄ሺ௜ሻሺݐሻ ൅ ݀ሺݐሻ								(1) 

 
Where, d(t)	 is a remainder which is a non-zero mean 
slowly varying function with only few extrema. Each one 
of the IMFs, say the ith one  ݄ሺ௜ሻሺݐሻ, is estimated with the 
aid of an iterative process, called sifting, applied to the 
residual multi-component signal. 

 
B. Ensemble Empirical Mode Decomposition (EEMD): 
In this method, reported in [13], the IMF components are 
obtained applying EMD to ensembles by adding different 
realizations of WGN with finite variance to the original 
signal ݔሾ݊ሿ. EEMD algorithm is described in [10], as 
follow: 
௜ሾ݊ሿݔ (1 ൌ ሾ݊ሿݔ ൅  ௜ሾ݊ሿ, where ߱௜ሾ݊ሿ (i=1,2,…,I) are߱ߚ

different realizations of zero mean unit variance 
WGN. 

2) EMD is applied to each ݔ௜ሾ݊ሿ (i=1,2,…,I) for 
obtaining their modes ܨܯܫ௞

௜[n], where k=1…K 

indicates the modes. 
3) Assign ܨܯܫ௞ as the kth mode of ݔሾ݊ሿ, obtained as the 

average of the corresponding IMFs: ܨܯܫ௞ሾ݊ሿ ൌ
ଵ

ூ
∑ ௞ܨܯܫ

௜ூ
௜ୀଵ ሾ݊ሿ. 

Each ݔ௜ሾ݊ሿ is descomposed independly from other 
realizations and so for each one a residue ݎ௞

௜ሾ݊ሿ ൌ
௞ିଵݎ	
௜ ሾ݊ሿെൌ	 ௞ܨܯܫ

௜ሾ݊ሿ is obtained. 
 
C. Mel-Frequency Cepstral Coefficient (MFCC): In 
order to obtain relevant features for PCG signals, four 
different derivations of MFCC are calculated [19]: 

S_MFCC. This coefficient is obtained from the MFCC 
on the signal ܵ௫ሺݐሻ by 
 

ܵ௫ሺݐሻ ൌ ܺሺݐሻ െ ௥ܶሺݐሻ      (2) 
 
Where, ௥ܶሺݐሻ ൌ ∑ ௜ܨܯܫ  and i is ith IMF.   

ST_MFCC. The MFCC technique is applied to the 
results of the energy operator on the frequency domain of  
ܵ௫ (FFT with sliding hamming window, 50% overlap), as 
follow: 
 

Ψ൫ܵ௫ሺ݅ሻ൯ ൌ ܵ௫ଶሺ݅ሻ െ ܵ௫ሺ݅ ൅ 1ሻܵ௫ሺ݅ െ 1ሻ, 
            	݅ ൌ 1,2, …  (3)   ݓ݋݀݊݅ݓ	݄ݐ݅

 
SW_MFCC. These coefficients capture the effects 

derived from the change of frequency bands of the 
spectral energy distribution, applying MFCC to the 
sliding hamming window (50% overlap) of the signal 
௫ܹሺݐሻ, reconstructed by: 

 
 ௫ܹሺݐሻ ൌ ∑ ௜ܨܯܫܹ , where ܹܨܯܫ௜ ൌ ௜ܥ ∗  ௜  (4)ܨܯܫ

 
  And  ܥ௜ are weights obtained by: 

 

௜ܥ ൌ 1 ൅
ቚଵି

ಿశభ
మ
ቚ

ଵ଴
, ݅ ൌ 1,2, … ,ܰ and for ith odd.  

 

௜ܥ ൌ ൞
1 ൅

௜ିଵି
ಿ
మ

ଵ଴
	 , ݅ ൌ 1,2, …ܰ/2

1 ൅
௜ିಿ

మ

ଵ଴
	 , ݅ ൌ

ேାଵ

ଶ
, …ܰ	

			ൢwith	݄݅ݐ	even   

 
SWT_MFCC. These coefficients are obtained from 

the combination of ST_MFCC and SW_MFCC, where 
the SW_MFCC is calculated applying MFCC to the 
power spectrum of ௫ܹሺݐሻ. 
 
D. Hidden Markov Models (HMM) 

HMM is an extension of Markov chains [20]. This 
study has focused on training criteria based on the MLE 
criterion, given	the good performance in previous studies 
[21]. Let ܺ ൌ ൛߮௥

௡ఝೝ: ݎ ൌ 1,… , ܴൟ a training set of R 
samples, with categories C =	൛ܿ௥

௡ఝೝ: ݎ ൌ 1,… , ܴൟ for M 
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different classes, i.e., ܿ௥ 	∈	 ሼܿ௠:	݉ ൌ 1,…  ሽ. Theܯ,
training based on MLE criterion is carried out with the 
following objective function to a probability P: 

 

ெ݂௅ாሺΘሻ ൌ 	෌ logሺܲሺ
ோ

௥ୀଵ
߮௥
௡ఝೝ	|ܿ௥ሻሻ  (5) 

 
The optimization of (5) is achieved by adjusting the 

parameters of each model separately, relying on the 
training observation data, so that expression (5) gets a 
maximum value. This procedure includes the Expectation 
Maximization (EM) algorithm which is a well-known 
method when the data are incomplete or have hidden 
parameters [22]. 
 
2.3. Proposed procedure 

 
Figure 1. Proposed methodology. 

 
According to Figure 1, PCG signals were resampling 

to 4410 Hz and normalized in [-1 1]. Later, in order to 
obtain a relevant feature set, a decomposition analysis 
was carried out using EMD, EEMD and Adaptive EEMD. 
Next, four different derivations of MFCC (S_MFCC, 
ST_MFCC, SW_MFCC and SWT_MFCC) were 
calculated from two constructed signals as result of 
adding to odd and even IMF. Additionally, nine statistical 
moments of HHT were calculated, and the feature 
selection was performed using the FRS algorithm. 
Finally, the stochastic analysis of the feature space, in 
order to recognize the beat samples, was carried out by a 
classifier type ergodic HMM. The training stage was 
developed using an EM algorithm in order to estimate the 
maximum likelihood parameters with a convergence at 
10e-6. The classification stage was carried out by a 30-
fold cross-validation procedure using a 70/30 split, where 
consistency and representation capability of the feature 
space were analyzed. 

 
3. Results and discussion 

Table 1 presents the computational cost of the PCG 
decomposition using EMD, EEMD and CEEMDAN, 
showing the EMD as the major performance in terms of 

the time processing, but the CEEMD demonstrated the 
lowest residual error. Table 2 shows the classification 
accuracy for the cardiac murmur detection system using 
4-SAA PCG signals and HMM, where a set of 60 features 
were obtained from constructions based on IMFs. The 
first 10 statistical moments of HHT were included in this 
features set. These results show that the variants of 
MFCC provide relevant information about heart valve 
damages. Finally, this system is compared with the 
HMM-EMD-MFCC approach (Table 3) where a small 
increase in performance was evidenced.  

 
Table 1. Performance EMD - EEMD and CEEMDAN. 

Decomposition Processing 
time (s) 

Residual 
error (%) 

EMD 0.159 4.54e-6 
EEMD 10.59 7.54e-6 
CEEMDAN 23.5 2.83e-6 

 
Table 2. Accuracy HMM - decomposition techniques. 

Decomposition Accuracy (%)  Sensitivity(%) Specificity(%) 
HMM-EMD 96.7±1.4 98.6±2.1 94.±2.2 
HMM-EEMD 95±1.5 97±2.1 93.3±2.3 
HMM-
CEEMDAN 

98.9±0.7 99.2±1.1 98.5±1.1 

 

Table 3. Comparison with other approaches. 
Approach Accuracy (%) 
HMM-EMD-MFCC [2] 98.7 
HMM-EMD-MFCC (this Work) 98.9 

 
4. Conclusion 

In this study, we compared EMD, EEMD and  
CEEMDAN, in combination with features based on 
different types of  MFCC and statistics moments, and 
showed an increase in the accuracy, specificity and 
sensibility of the HMM classification system  when 
CEEMDAN was used. Additionally, the different types of 
MFCC demonstrated high discrimination capacity for 
detecting cardiac murmurs. However, CEEMDAN 
implied a high computational cost for PCG signal 
decomposition compared to the EMD technique; which 
must be taken into account for a computer aided 
diagnostic system.   
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