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Abstract 

This study extends a comprehensive closed-loop 
physiological model of the circulatory system based on 
lumped electrical analogue components. The model 
associates subject specific factors such as age, gender, 
body surface area, fitness and smoking habits, with 
cardiovascular parameters including vascular blood 
pressures, blood volumes, and cardiac output, providing 
physiological insight via the interpretation of the model’s 
parameters. The model parameters were determined 
using multi-objective constrained optimization in a 
typical inverse problem setup, and were subsequently 
associated with the subject specific factors using least 
squares polynomial relationships with ℓ1–ℓ2-norm 
regularization. We validated the performance of the 
model using data from 289 subjects, replicating arterial 
blood pressure accurately (about 4.8% relative deviation 
from the measured values), whilst also providing 
physiologically realistic estimates of vascular blood 
pressures, blood volumes, and cardiac output. 

1. Introduction

The study of the circulatory system has attracted 
considerable attention because of its vital importance to 
sustain life and the large prevalence of cardiovascular 
disease (CVD). For example, the world health 
organization estimated that 17.3 million people died from 
CVD in 2008, and it is estimated that by 2030 more than 
23 million people will die annually from CVD [1]. 
Therefore, accurate, frequent, and ideally inexpensive 
assessment of cardiovascular functionality has the 
potential to save lives. Cardiovascular functionality can 
be assessed reasonably accurately, relatively easily, and 
fairly inexpensively by experts using the 
electrocardiogram (ECG), heart rate (HR), and arterial 
blood pressure (ABP) [2]. More elaborate tests are 
possible to investigate potential cardiovascular system 
related malfunctions, if required [2]. One of the clinical 

protocols cardiologists often rely on to assess the state of 
the cardiovascular system is the exercise treadmill test 
(ETT). During an ETT a person is required to complete a 
test of progressive physical difficulty, which requires 
increasing their cardiac output (CO), i.e. the volume of 
blood pumped by the heart every minute. An experienced 
clinician may then diagnose CVD pathologies including 
ischemia and cardiac failure, or refer the subject for 
additional tests. 

Mathematical models may provide valuable qualitative 
and quantitative insight into the understanding of 
physiological processes, complementing the information 
available to clinicians and offering sophisticated, robust 
decision support tools. The mathematical modeling of 
data can be broadly divided into two categories: first-
principles and data-driven [3]. The first category employs 
physical principles which are believed to govern the 
modeled system, whereas the second category focuses on 
forming mathematical and statistical relationships whose 
only constraint is that they must approximate as well as 
possible the measured data. Both approaches have merits, 
but the results of first-principle models may also be 
interpreted and understood by specialists who are not 
necessarily mathematically oriented, facilitating the 
means for multi-disciplinary interaction.   

Although it is widely accepted that the Navier-Stokes 
equations may provide the means to the most precise 
quantitative description of the circulatory system, the 
computational cost is prohibitive for anything but 
assessing restricted vascular regions [4]. The windkessel 
model (WM) [5] provides a simplified electrical lumped 
element analogue of vascular regions of the circulatory 
system on the basis of resistors and capacitors. Additional 
electrical components such as inductors could be 
introduced improving the properties of the model, at the 
cost of additional complexity [6]. Although WM-types 
have been widely adopted to study the circulatory system, 
their application has often been limited to vascular 
regions, e.g. [6,7]. Studying independently regions of the 
circulatory system obscures insight into vital 
physiological phenomena of substantial clinical 
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importance such as feedback, arterial-venus interactions, 
and systemic-pulmonary interactions. Alternatively, some 
researchers proposed sophisticated models of the closed-
loop circulatory system, but these are tremendously 
complicated [4,8]: having a cardiovascular model with 
multiple free parameters complicates the task of 
parameter identification for subject-specific analysis [9], 
and hinders its adaptation by the medical community. 
Motivated by these considerations, a computationally 
simple and efficient closed-loop WM-type of the 
circulatory system was introduced and numerically solved 
by Tsanas et al. [10], accounting for changes in vascular 
regions of the circulation by expressing the regional WM 
parameters as linear functions of subject specific factors 
(age, gender, fitness, and smoking habits).  

This study extends our closed-loop model [10] in three 
main aspects, specifically: (a) we included the additional 
subject specific factor body surface area (BSA, a function 
of height and weight) which is known to affect both ABP 
and CO [2], (b) the determination of the model 
parameters was achieved via robust multi-objective 
constrained optimization instead of the trial and error 
method employed previously, and (c) first and second 
order terms were used to associate the subject specific 
factors with the regional WM parameters. This was 
achieved using a regularized framework promoting 
sparsity and shrinkage of the coefficients (instead of the 
standard least squares approach used previously). 
Ultimately, this study extends the WM framework and 
proposes novel quantitative relationships of subject 
specific factors evaluating ABP, CO, and blood volumes 
for all major vascular regions of the circulatory system. 

 
2. Data 

We used data from 289 participants (18-80 years old, 
mean±standard deviation: 48±13 years) who were 
referred to Onassis Cardiac Surgery Centre (Athens, 
Greece) for an ETT. Detailed demographics and medical 
records (e.g. prior ultrasound scans) were available for 
most of the participants. Approximately 20% of the 
participants were without any known cardiovascular-
related disease (control group). Subjects younger than 18 
years old and subjects with implanted devices were 
excluded from the study. Systemic ABP and HR were 
measured at rest, and approximately every 3 minutes 
during the ETT by the same cardiologist and nursing staff 
using arm-manometer. The study protocol was reviewed 
and approved by the local ethics committee. 

 
3. Methods 

This section summarizes the original lumped element 
electrical model [10], and elaborates on the association 
between subject specific factors and the WM elements.  

 
Fig.1. Schematic diagram of the proposed model. The ovals 
represent the large vessels (compliance vessels). The rectangles 
represent the smaller vessels (resistance vessels). We used 
intuitive subscripts: s – systemic, p – pulmonary, a – arterial, 
and v – venous. By convention, capital subscripts refer to the 
heart: R – right, L – left, A – atrium, V – ventricle. 

 
3.1. Model formulation 

The founding blocks of the WM are the electrical 
equivalents resistance R and capacitance C (which is 
most frequently referred to as compliance in physiology). 
Both lumped elements directly relate to physiologically 
interpretable properties: the resistance corresponds to the 
difficulty in blood flow through a vessel and is a function 
of its radius, whereas the compliance corresponds to the 
elasticity of the vessel. Large vessels are modeled as 
compliances, and smaller vessels are modeled as 
resistances; this simplifying assumption often works well 
in practice. Following Ohm’s law for electrical circuits, a 
resistive vessel is characterized by Eq. (1): 

ܳ ൌ ൫ ୧ܲ୬୮୳୲ െ ୭ܲ୳୲୮୳୲൯ ܴ⁄  (1) 

where ܳ represents the flow (electrical equivalent of 
current), and ܲ represents the pressure (electrical 
equivalent of voltage). Similarly, applying the standard 
electrical equations for capacitors, the compliant vessel is 
characterized by Eqs. (2) and (3): 
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ܸ ൌ ଴ܸ ൅ ܥ ∙ ܲ (2) 
ܸ݀ ⁄ݐ݀ ൌ ܳ୧୬୤୪୭୵ െ ܳ୭୳୲୤୪୭୵ (3) 

where ܸ represents the blood volume, and ଴ܸ the residual 
blood volume. Combining Eq. (2) and (3) we derive: 

ܥ ∙ ݀ܲ ⁄ݐ݀ ൌ ܳ୧୬୤୪୭୵ െ ܳ୭୳୲୤୪୭୵ (4) 
We modeled each of four major parts of the 

circulatory system (systemic arteries, systemic veins, 
pulmonary arteries, pulmonary veins) as combinations of 
a single resistance and a single compliance (see Fig. 1). 
The compartment to which each of the lumped elements 
corresponds to appears as a subscript, for example the 
resistance in the systemic arteries is represented by ܴୱୟ. 
Multiple distributed lumped elements could in principle 
be used to refine specific vascular regions of interest. The 
derivation of the closed loop model uses Eqs. (1)-(4), 
solving the differential equations via backward Euler 
approximations (for details about the resulting systems of 
equations see [10]). The heart was modeled using the 
double sigmoid function to model the two ventricles as 
time-varying elastic components [10]. 
 
3.2. Determining the model parameters 
for each participant and their relationship 
with subject specific factors 

In our previous study, the determination of the six 
model parameters which were subject to optimization 
(ܴୱୟ, ܴ௣௔, ܥୱୟ, ܥ௣௔, ܥ௅௏,ୢ୧ୟୱ୲୭୪୧ୡ, ܥோ௏,ୢ୧ୟୱ୲୭୪୧ୡ) was 
achieved manually by trial and error. In this study, we 
applied multi-objective nonlinear constrained 
optimization using the interior point approach [11]. The 
bound constraints for each of the six model parameters 
were set to reasonable values following manual 
experimentation. The goal of the optimization in all cases 
was set as follows: determine the six WM parameters so 
that (a) the measured ABP is replicated, (b) the SV for the 
left ventricle (LV) and the right ventricle (RV) is 
practically equal, (c) the pulmonary pressures have 
physiologically reasonable values (in the region 25/9 
mmHg), and (d) the CO has physiologically reasonable 
values (4-6 L/min). Since pulmonary pressures and CO 
data were not available, the weight for determining model 
parameters to match the systemic ABP in the multi-
objective optimization goal was set to be larger.  

The model developed so far associated the electrical 
lumped elements with CO, pressures and volumes in the 
associated vascular regions of the circulatory system. 
Next, we expressed each of these model parameters as 
functions of five subject specific factors: age, gender (0 
denoting males and 1 females), smoking, fitness 
(quantified by the participant’s performance during the 
ETT protocol). Specifically, each of the six model 
parameters was expressed as a linear function (in terms of 
the coefficients) of the subject specific factors: 
ሺܴ୶୶	ݎ݋	ܥ୶୶ሻ ൌ ܽ଴ ൅ ܽଵ ∙ ܽ݃݁ ൅ ܽଶ ∙ ݎ݁݀݊݁݃ ൅ ܽଷ ∙

݃݊݅݇݋݉ݏ ൅ ܽସ ∙ ݏݏ݁݊ݐ݂݅ ൅ ܽହ ∙ ܣܵܤ ൅ ܽ଺ ∙ ሺܽ݃݁ ∙
ሻܣܵܤ ൅ ܽ଻ ∙ ሺ݃݁݊݀݁ݎ ∙ ሻܣܵܤ ൅ ଼ܽ ∙ ሺ݂݅ݏݏ݁݊ݐ ∙ ሻܣܵܤ ൅
ܽଽ ∙ ሺܽ݃݁ ∙ ሻ݃݊݅݇݋݉ݏ ൅ ܽଵ଴ ∙ ሺ݃݁݊݀݁ݎ ∙  ሻ.       (5)ݏݏ݁݊ݐ݂݅

The polynomial coefficients were computed using 
penalized least squares with ℓ1–ℓ2 regularization to 
promote sparsity and shrinkage [12]. 
 
3.3. Model generalization 

To objectively evaluate the generalization performance 
of the proposed model in estimating systemic ABP, we 
used the standard 10-fold cross-validation with 100 
iterations for statistical confidence [12]. Specifically, the 
model parameters were obtained using 90% of the data, 
and its performance was tested using the model inputs on 
the remaining 10% of the data (out of sample data); errors 
over the 100 iterations were averaged and are presented in 
the form mean ± standard deviation. Similarly to our 
previous study [10], we used the mean relative error 

(MRE): MRE ൌ 100 ∙
ଵ

ே
∑ ୧ݕ| െ |ො୧ݕ ୧⁄୧∈ஐݕ , where ݕො is the 

estimated value, ݕ is the measured value, i is the sample 
index, Ω contains the indices in the out of sample subset, 
and ܰ is the cardinality of the out of sample subset. 
 
4. Results 

Table 1. Polynomial coefficients associating the subject 
specific factors with the model parameters. 

 Rsa Rpa Csa Cpa CLV,d CRV,d 
a0 5.821 1.932 0.006 0.008 0.007 0.018 

a1 0.022 0.001 -2.1e-5 -3.9e-6 4.3e-5 9.4e-5 

a2 -1.062 0.201 0.001 -0.0006 -0.001 -0.005 

a3 -0.0008 0.003 2.3e-5 -1.9e-5 -1.5e-5 -5.1e-5 

a4 -0.451 -0.844 -0.002 -0.002 0.006 0.017 

a5 1.590 -0.325 -0.0007 -0.001 0.002 0.006 

a6 -0.002 0.001 6.1e-6 4.7e-6 -1.4e-5 -3.1e-5 

a7 0.323 -0.237 -0.0004 -0.0002 0.0008 0.002 

a8 -0.547 0.383 0.0006 0.001 -0.002 -0.006 

a9 0.0001 -4.5e-5 -6.9e-7 5.5e-7 7.0e-7 1.8e-6 

a10 -0.391 0.094 -6.1e-5 0.001 -0.001 -0.0006 

See Eq. (5) for the association of model parameters with the polynomial 
coefficients and the corresponding model inputs. 

 
The application of the nonlinear constrained 

optimization algorithm led to WM parameters which 
satisfied the constraints in all cases, and matched the 
measured systemic ABP very accurately. Subsequently, 
we applied the ℓ1–ℓ2 regularized least squares method to 
determine the polynomial coefficients. Table 1 
summarizes the relationships between the subject specific 
factors and the WM parameters. The interpretation of the 
polynomial coefficients depends on the magnitude and 
the sign of the coefficient. For example, the systemic 
arterial resistance increases with age and BSA, whilst it is 
lower in females (higher resistance corresponds to higher 
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blood pressure). The errors in replicating ABP were: 
Pୱୟ,ୱ୷ୱ୲୭୪୧ୡ ൌ 4.9 േ 0.05 and Pୱୟ,ୢ୧ୟୱ୲୭୪୧ୡ ൌ 4.7 േ 0.04. 
Several simulations revealed physiologically reasonable 
values for volumes and CO, although these values cannot 
be quantitatively verified with the available data. 
 
5. Discussion 

This study extended a previously proposed closed loop 
model of the circulatory system [10], and set to determine 
functional relationships between the subject specific 
factors with each of the associated causative WM 
parameters. The results in Table 1 can be intuitively 
understood qualitatively, and it is reassuring that the signs 
of the associated polynomial coefficients with the subject 
specific factors are in agreement with physiological 
understanding. The model was validated by replicating 
accurately the measured ABP, and providing realistic 
estimates of blood volumes, pulmonary pressures, venous 
pressures, SV, and CO. We demonstrated that the 
estimated ABP was more accurate compared to our 
previous model [10], which is attributed to three factors: 
(a) automatic determination of the model parameters 
avoids the bias of manual trial and error, (b) the 
introduction of BSA as a critical factor, (c) introduction 
of a more detailed polynomial form associating the 
subject specific factors with the outputs of the model. To 
the best of our knowledge, there are no other closed-loop 
subject-specific models of the circulatory system which 
are validated against actual data in terms of replicating 
ABP, blood volumes, and CO in the research literature. 

The determination of the values of the WM parameters 
for each participant is a classical optimization problem: a 
number of parameters within certain bound constraints 
need to be identified, so that a goal is attained. This was 
achieved using multi-objective nonlinear constrained 
optimization with the interior point approach [11]. We 
also experimented with the frequently used Nelder-Mead 
algorithm [13]: the bound constraints were introduced by 
sinusoidal transformation of the variables (variable 
transformation is a standard approach to include bound 
constraints with non-constrained optimization solvers). 
We found that the interior point approach provided faster 
and better solutions. 

The current study presented a general framework for 
the association of subject specific factors with 
cardiovascular parameters at rest. In practice, CVD 
characteristics may be revealed during the ETT: we are 
currently working on integrating additional aspects such 
as baroreceptor control as part of the model to study these 
effects. The methodology described to estimate the values 
of the WM parameters can be applied during exercise in 
the ETT protocol: changes in the values of the model 
parameters for each participant can then be quantitatively 
expressed as functions of sympathovagal innervation. 
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