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Abstract 

Human sleep consists of four characteristic phases: 
light (L), deep (D), REM sleep and almost-awake state 
(W) with additional arousal episodes (Exc). All of these 
elements create a nontrivial, complex structure, the 
statistical properties of which were studied here 
carefully. We observed a different behavior of heart rate 
variability for each phase. Thus, we should take these 
specific properties of sleep architecture into 
consideration while modeling heart rate variability. 

We analyzed 34 simultaneous heart rate variability 
and 30 EEG nighttime recordings from healthy adults. 
EEG provides accurate information about sleep phases.  

The main idea behind our sleep architecture 
reconstruction is to consider two properties: probabilities 
of transitions between all possible pairs of phases and 
probability distribution of phase durations. We calculated 
the probabilities of transition between each pair of 
phases and we aggregated them into two probability 
matrices (separately for each half of the sleep period 
because the character of the inter-phase transitions is 
different in early and late sleep). We found also that the 
probability distribution of L, D and REM sleep duration 
are described by a gamma distribution and that of the W 
phase - by a Pareto distribution.  

To generate the RR intervals for every sleep 
phase, we use the model described in [1]. We consider 
three variants: (a) periodic sleep cycles with the 
sequences of phases: L, D, REM, W in each cycle, (b) a 
randomized distribution of phases, (c) the architecture 
based on our model. The results show that variant (c) 
gives 50% of the time series indistinguishable from real 
data using all standard linear and nonlinear HRV 
assessment methods while for variants (a) and (b) we 
obtain 41% and 3% accordingly.  

1. Introduction

PhysioNet/Computing in Cardiology Challenge in 
2002 had a topic “RR Interval Time Series Modeling”. In 
the full papers describing best models we can find a few 
very interesting models of heart rate variability [2,3]. 

However, most of them do not consider many factors 
causing variability during day and night,. As we started 
thinking about modelling of HRV, we decided to work 
only with nighttime parts of the HRV, to avoid the 
problems of modelling human daytime activity. 
Moreover, sleep is a very specific time for heart activity. 
Each of four characteristic sleep stages: light (L), deep 
(D), REM sleep, almost-awake state (W) reflect  different 
states of nervous system [4]. It manifests in changes of 
blood pressure, breathing variability, temperature and 
obviously heart rate. Unfortunately none of these factors 
were considered in the models from the PhysioNet/CinC 
Challenge in a satisfying way.  

Arrangement of sleep stages creates a nontrivial, 
complex structure called sleep architecture. This 
architecture is presented usually in a form of a graph 
showing dependence of sleep stage on time, called 
hypnogram. In general, sleep is divided to 80 to 110 
minute cycles with sequence of stages: light sleep, deep 
sleep, and REM and wake episode [5]. But this is just a 
very general rule; in real data we observe frequent 
changes inside the cycle, together with short episodes of 
behavior very different from the expected one, so 
modeling of hypnogram is not easy.  

Correlation between heart rate variability (HRV) and 
sleep stages is clearly visible and described in the 
literature [6]. The most obvious example is that during 
deep sleep we observe decrease of mean heart rate value 
what is in contrast to REM and wake phase. Differences 
in nonlinear properties between sleep stages were also 
found [7, 8].  Sleep architecture is one of the factors 
which determine the dynamical properties of heart rate 
variability.  

1.1. Starting point: HRV model for 
individual sleep stages 

The starting point for our work was implementation of 
HRV model by Kantelhardt et al. [1] which worked for 
different sleep stages. Model is generally stochastic but 
with some additional short-range correlations introduced 
and with breathing rhythm applied. So it was ideal for our 
purposes as a first approximation. It consists of three 
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separate parts. First part is a constant element which 
defines the mean of RR-interval in each sleep stage. 
Second part simulates the influence of respiratory system 
on the HRV. This influence is implemented by sinusoidal 
function. Parameters of this function have direct, 
physiological associates: amplitude of this function 
corresponds to strength of the respiratory coupling and 
time is simply a period of respiratory cycle. This 
sinusoidal function has fixed respiratory period for every 
sleep stage, which unfortunately makes it look strict and 
artificial. Third part, the stochastic process with two 
parameters is the core of the model. This is the part which 
introduces short-range correlations, so important for the 
final result. The main equation for generating RR-interval 
time series is presented in eq. (1). Each sleep stage has 
got its own set of parameters. 
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where:	μ is a constant value,  Θሺmሻ ൌ 1 for m ൐ 0 and 
Θሺmሻ ൌ 0 for m ൑ 0, t୧ ൌ ∑ τ୨
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and t୧ ൌ 0 for initialization (i ൏ 5).  The random integer 
kj following a power-law distribution, describes the 
variance of correlations. The random variable y୧ is 
created by stochastic process with two parameters. 

 

2. Data 

We analyzed 34 RR interval series from healthy 
subjects. All data belong to anonymous Holter ECG 
database of the Institute of Cardiology (Warsaw, Poland) 
and were collected for medical purposes. Signals are 
sampled at 128 Hz (i.e. with a resolution of 8 ms) and 
were checked for artifacts by a qualified cardiologist. We 
used also 30 hypnograms created from complete EEG 
signals by a neurologist. Particular phases were defined in 
5-minute windows with 20-second offset. The first set of 
data was used to assess generated synthetic RR time 
series, whereas the second one was necessary to study 
properties of sleep architecture. 

 
3. Development and improvements  
of the model 

Kantelhardt’s model described HRV characteristics 
within a single sleep stage, but there was no way to 
generate complete synthetic HRV recording, because 
authors did not provide description how to model 
hypnograms. What is more, there are no hypnogram 
models available in the literature. One of the main aims of 
the development the model was then, to develop the 
realistic sequences of sleep stages during sleep, i.e. so-
called sleep architecture.  

The main idea behind our sleep architecture 
reconstruction is to consider two properties: probabilities 
of transitions between all possible pairs of phases and 
probability distribution of phase durations in real data. 
Because the character of the inter-phase transitions is 
entirely different in early and late sleep, we calculate all 
probabilities and distributions separate for the first and 
the second part of sleep. Then we aggregated them into 
probability matrices. We found that the probability 
distributions of light, deep and REM sleep stage duration 
are described by a gamma distribution and that of the 
wake phase - by a power-law distribution. We believe 
that this conclusion by itself is a very important result. 

 
Table 1. Matrices presenting probability of transition 
between all possible pairs of sleep stages, together with 
sleep stages percentage, during the first and the second 
half of sleep. As we expected, results for the first and the 
second half of sleep are clearly different, especially for 
the transition between stages: L->D, L->REM, L->W, L-
>Exc (abbrev. Exc. comes from “exercise”, which simply 
describes stages of repositioning). We also observed 
differences in sleep proportion for deep sleep, REM and 
wake. Probabilities of transition between pair of stages 
REM->D, W->D, D->L, REM->Exc and sleep proportion 
of light and exercise episodes do not change during sleep.     

 
I half of sleep – matrix of probability [%] Sleep  

proportion 
[%] 

Sleep 
stage 

L D REM W EXC 

L - 47,8 4,9 5,2 42,2 59,3  
D 75,2 - 0,01 1,7 22,1 27,6  
REM 76,0 0,0 - 11,9 12,1 4,9  
W 4,9 0,0 89 - 6,0 5,4  
Exc 48,4 3,8 30,1 17,7 - 2,7  

II half of sleep – matrix of probability [%] Sleep  
proportion 

[%] 
Sleep 
stage 

L D REM W EXC 

L - 22,2 9,2 11,3 57,3 66,5  
D 77,6 - 2,0 4,1 16,3 10,8  
REM 69,1 0,3 - 18,2 12,4 7,6  
W 8,7 0,0 80,3 - 11,0 12,1  
Exc 38,6 0,0 36,4 25,0 - 3,0 

 
 
4. Results 

We prepared a test, to determine, if our idea of 
hypnogram simulation, works well. The three variants 
were considered: (a) periodic sleep cycles with the 
sequences of phases: L, D, REM, W in each cycle, (b) a 
randomized distribution of phases, (c) the architecture 
based on our model. Comparison of RR time series and 
hypnograms between these variants and real data is 
showed in fig. 1.  
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Figure 1. Hypnograms generated using three variants of 
sleep stage configurations: (a) periodic sleep cycles with 
the sequences of phases: L, D, REM, W in each cycle, (b) 
a randomized distribution of phases, (c) the architecture 
based on our model and real data (d). Below in Fig. 1 e-h, 
in the analogical order, we can see corresponding RR 
interval time series. Artificial hypnograms correspond 
directly to RR interval series created based on them, but 
note, that (d) shows real hypnogram and (h) real RR 
interval series, but because of lack of the data they do not 
come from one subject.  

 
We found that there are no differences between HRV 

recordings, generated using these three variants of 
hypnograms. Statistic properties of the real data and three 
artificial recordings were so close, that none of the 
standard linear methods could distinguish between them 
(tab. 2), so we used more complex method: multiscale 
multifractal analysis (MMA) [9]. MMA is a time series 
analysis method, looking for fractal scaling of 
fluctuations. As a result, it gives so called Hurst surface 
h(q,s), depicting scaling of variance h, as a function of 
fluctuation magnitude q and time scale s. This Hurst 
surface h(q,s) for a HRV from a healthy subject has a 
very characteristic shape, which is automatically assessed 
by a program developed in our lab. Because program is 
prepared as a screening examination method, it gives only 
very simple result: healthy (1) or ill (0). Results show that 
variant (c) gives 50% of the series indistinguishable from 
real data while for variants (a) and (b) we obtain 41% and 
3% accordingly. We observed the largest differences 

considering the shape of Hurst surfaces for low scales s 
(fig 2). 

 
Table 2. Results of standard linear HRV analysis, for 

34 generated night-time RR interval series in three 
variants of sleep architecture: (a) periodic sleep cycles 
with the sequences of phases: L, D, REM, W in each 
cycle, (b) a randomized distribution of phases, (c) the 
architecture based on our model. We see no clear 
differences between variants, because of the same 
statistical properties. In comparison with real data we are 
not able to select the best configuration of sleep stages.  

 
linear 
method 

(a) (b) (c) real data 

mean [ms] 920(5) 917(8) 929(5) 1002(127) 
std [ms] 76(3) 78(3) 74(3) 104(32) 
RMSSD [ms] 42(0.5) 43(0.9) 43(0.6) 63(24) 
pNN50 [%] 13(0.5) 13(0.8) 14(0.5) 15(8) 

 
 

There are three statistical properties of the hypnogram, 
that we considered trying to generate an artificial one. 
Probability of transition between sleep stages, sleep 
stages duration and sleep stages ratio. However 
generating hypnograms while only the first two of them 
are fixed, determines correct realization of the third one, 
because they are not independent. 
 

 

 
 
 
Figure 2. Average Hurst surfaces h(q,s) calculated for 
synthetic RR interval time series using three variants of 
sleep stage configurations in comparison to Hurst surface 
obtained from real data. (a) Periodic sleep cycles with the 
sequences of phases: L, D, REM, W in each cycle, (b) a 
randomized distribution of phases, (c) the architecture 
based on our model (d) real data. We observed similarity 
of the shape of Hurst surfaces for low scales s between 
our model (c) and real data (d). 
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5. Conclusions 

We present a method for simulating healthy human 
sleep architecture based on properties of sleep observed in 
real data. In the literature similar solutions have never 
been developed so far. 

The big advantage of our method, is providing 
synthetic hypnograms with good proportion of sleep 
stages only based on the other statistical properties of 
sleep architecture (see Sec. 3). 

We found that the probability distributions of light, 
deep and REM sleep stage duration, are described by a 
gamma distribution and that of the wake phase - by a 
power-law distribution. 

Results show that sleep architecture simulated by our 
method is the best implementation for purposes of 
modeling heart rate variability. It leads to noticeable 
improvement in the quality of generated RR signals, 
especially considering their dynamical properties. 
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