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Abstract

Atrial cell models form the building blocks of complex
multicellular models and contain many input parameters
within a large parameter space. A rapid systematic way of
quantifying changes in model outputs due to input parame-
ter variability would enhance mechanistic understanding.
A parameter sensitivity study on input model conductances
within the Courtemanche-Ramirez-Nattel (CRN) human
atrial cell model was performed. Input maximal ionic
conductances were varied by randomly scaling baseline
model values, and used in single cell action potential (AP)
simulations. Multivariable regression was performed to
find regression matrix B which minimised differences be-
tween output Y and predicted Y ∗ = XB. Regression val-
ues were mean-centred and normalized to SD, such that a
+0.5 value implied parameter input 1SD above mean in-
creased output by 0.5SD. AP determinants were compared
(n = 100). dV/dtmax and Vamp showed strong sensitivity
only to maximal sodium conductance GNa, whilst APD
and tpeak were weakly sensitive to multiple conductances.
Predicted outputs showed strong correlation to measured
values: 0.880 ≤ R2 ≤ 0.998 for measured AP determi-
nants. Multivariable regression is a novel tool for examin-
ing parameter sensitivity of the CRN AP model and offers
rapid insight to the relative importance of input parame-
ters to specific outputs.

1. Introduction

Mechanisms of atrial fibrillation (AF) initiation and
maintenance are poorly understood and may be addressed
by computational models which capture electrical be-
haviour of atrial cells and tissue. Models of atrial cells are
coupled to complex multicellular tissue models to simulate
AF initiation and maintenance in the atrium. Biophysi-
cally detailed atrial cell models contain many input param-
eters within a large parameter space (e.g. Courtemanche-
Ramirez-Nattel (CRN) [1]).
Parameters are typically taken directly from published lit-

erature in model simulations; however there is increasing
interest in understanding the sensitivity of the model to
variation in model input parameters to explore the effects
of natural variability, disease or pharmacological interven-
tion. Existing methods to carry out parameter sensitivity
analysis in cell models of AF are based on investigating
single parameter changes systematically; this can be time
and cost-consuming and non-exhaustive considering the
size of the parameter space and the possibility of param-
eters co-varying [2]. Thus, a rapid yet systematic method
to characterise changes in model outputs due to input vari-
ability in atrial cell models would be a novel and useful
tool to enhance mechanistic understanding of AF.

2. Methods

A parameter sensitivity study on input model conduc-
tances within the CRN human atrial cell model was per-
formed, following the regression analysis performed by
Sobie et al on ventricular cells [3].
Briefly, input maximal ionic conductances were varied by
randomly scaling baseline model values to a normal or
log-normal distribution, generating parameter sets. Each
parameter set was used as inputs in single cell action po-
tential (AP) simulations, generating time series data from
which model outputs were calculated and extracted. For
consistency with the cardiac electrophysiology modelling
community, the CRN model code used in the simulations
was the downloadable version from the CellML repository.
The AP model was simulated with a pacing rate of 1Hz
over multiple beats, and the final AP was analysed to ob-
tain model outputs. AP activation time was defined as the
time at which the membrane potential exceeded −60mV .
Simulations were performed in Matlab (Mathworks).
p = 13 model inputs were chosen, and n runs were sim-
ulated. From the input value matrix X (p × n), m = 10
model outputs per simulation were extracted to output ma-
trix Y (n×m), and multivariable regression was performed
using the NIPALS algorithm [4,5], to find a m× p regres-
sion matrix B which minimised differences between out-
put Y and predicted output Y ∗ = XB.
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The structure of these matrices are shown in Figure 1. Re-

Figure 1. Schematic of input, output and regression matrix
structures. The input matrix is of size n × p, the output is
of size p×m and the regression matrix is p×m.

gression values were mean-centred and normalized to stan-
dard deviation (SD). A +0.5 value implies that a parameter
input 1SD above mean increases the output by 0.5SD.

3. Results and Discussion

Sample voltage-time plots of five simulated CRN action
potentials are shown in Figure 2, based on one baseline
(blue dashed line) and four randomly varied maximal input
conductance sets (parameter variation shown in right inset,
normalised and mean–centered to baseline). The top and
bottom insets show expanded views of variation in peak
AP and in AP resting potential.
Ten model outputs were calculated from post processing

Figure 2. Change in AP morphology relative to base-
line (blue dashed line), produced by randomly varying
maximal input conductances in CRN model2. Right in-
set: Coloured bar graph shows conductances normalised
to baseline (blue). Top/bottom insets: expanded views of
AP peak and AP resting potential.

the simulated CRN model, including outputs determining
the shape of the resultant AP and also for the intracellu-
lar calcium concentration (Cai). Within this study, we fo-
cussed on regression analysis of the AP outputs, and in par-
ticular to the four AP outputs most commonly considered
in the literature: action potential duration (APD), ampli-
tude of AP (Vamp) , time from AP activation to peak volt-
age (tpeak), and max AP upstroke velocity dV/dtmax.

3.1. Regression analysis for true vs pre-
dicted outputs from regression model

Based on simulations from generated datasets of ran-
domly varied maximal ionic conductances (n = 100), re-
gression matrix B was determined, and used to calculate
predicted output matrix Y ∗ using reverse regression. A
regression analysis for true (Y ) versus predicted (Y ∗) out-
put values was performed, and the results for four of these
outputs, APD, Vamp, tpeak and dV/dtmax are shown as
scatterplots in Figure 3.
Predicted outputs showed strong correlation to simulated
values, with R2 values as follows: APD: 0.966, Vamp:
0.998, tpeak: 0.880, dV/dtmax: 0.961. This indicates a
high predictive power of the regression model in estimat-
ing the effects of input parameter variability in the absence
of a detailed computer model, and may have further appli-
cation in using predicted parameter sensitivities in guiding
development of new models, or in predicting the effect of
small natural variabilities on atrial AP morphologies be-
tween individuals with different gene expressions.
However, as highlighted by Sobie in [3], the regression
model assumes a linear approximation between inputs and
outputs, and cannot predict whether this approximation
will hold true for a wider range of parameter values that
may still be within physiological range. Thus the regres-
sion model would need to be complemented by further
empirical study to determine the confidence levels of the
model in specific circumstances.

3.2. Parameter sensitivity analysis

Of the ten extracted model outputs, four outputs of ac-
tion potential duration (APD), AP amplitude (Vamp), time
from activation to peak (tpeak) and max AP upstroke ve-
locity dV/dtmax were compared to determine the relative
sensitivity of the outputs to variation in maximal input con-
ductance (n = 100). These results are displayed in Figure
4.
dV/dtmax and Vamp showed strong sensitivity only to
maximal sodium conductance GNa (0.98 and 0.94 re-
spectively), whilst APD and tpeak were weakly sensi-
tive to multiple conductances: GK1 (−0.35), Gto (0.49),
GKr (−0.56), GbCa (0.32) for APD, and GK1 (0.63),
INaKmax (0.33), GbCa (−0.53) for tpeak.
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Figure 3. Predictions of the regression model against simulated outputs. Four computed outputs from simulations of the
CRN single cell model, against predicted values generated by reverse regression. A larger R2 value is indicative of a close
match between computed outputs Y and the predicted outputs Y ∗ based on the regression matrix B.

Several of these results, namely the sensitivities of Vamp

and dV/dtmax to GNa confirm the strong relationship
between sodium channels and AP activation that is well
known in the scientific community, thus serving to sanity–
check the predictive power of the model. Other more
subtle results highlight the multi–parametric sensitivity of
given outputs to different input ionic conductances, which
may inform mechanistic understanding of AF initiation
and maintenance, and guide future pharmacological inter-
ventions to target specific AP outputs. These results are
based on local neighbourhood sensitivity analyses of the
input parameters, and further work to explore the effect of
larger parameter variability on outputs would improve the
model. The regression model technique may also be use-
ful in comparing and revealing subtle variations, between
different published models of an atrial AP or between the

model and experimental data allowing researchers to select
or modify the chosen model for future simulation studies.

4. Conclusion

Multivariable regression is a novel and rapid tool for ex-
amining multiple input parameter sensitivities within the
CRN AP model, and can offer detailed insight to the rel-
ative importance of chosen input parameters on specific
model outputs, with promising applications in improving
mechanistic understanding of AF and guiding future ex-
perimental design. However, the technique is based on
linear input–output regression in a local neighbourhood of
parameter space, and further work is required to fully ex-
plore parameter sensitivities of atrial cells, in single cells
and in multicellular tissue.
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Figure 4. Results of parameter sensitivity analysis for APD, Vamp, tpeak and dV/dtmax. In each plot, a single column of
regression coefficients in the matrix B is plotted, indicating how relative changes in input parameters lead to variation in a
particular output. Values are mean-centred and normalised to SD. A value of +0.5 indicates that a parameter input of 1 SD
greater than the mean will increase the output by half an SD.
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