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Abstract

This study aimed to quantify differences in uncertainty
in Tikhonov solutions arising from mesh discretization,
conductivity, and zeroth, first, and second order Tikhonov
(ZOT, FOT, and SOT) solutions for the inverse problem
of electrocardiography. We indirectly analyzed levels of
uncertainty in Tikhonov solutions through deriving their
equivalent Bayesian maximum a posteriori (MAP) esti-
mates, and then performing regularized sampling from the
Bayesian posterior distributions to form credible intervals
(CIs). We calculated the percentage of the true heart volt-
ages that fell between the 95% CIs. For all noise levels,
the 95% mean CIs for FOT and SOT always captured 11%
to 42% more of the true heart voltages than ZOT, suggest-
ing that regularization with FOT and SOT may provide a
greater level of certainty in reconstructing heart voltages.
In summary, we provide a methodology for quantifying un-
certainty in Tikhonov solutions, and use it to study different
regularization techniques.

Keywords—electrocardiography; inverse problem; Tikhonov reg-
ularization, Bayesian uncertainty quantification, sampling

1. Introduction

The inverse problem of electrocardiography aims to re-
construct heart voltages from torso surface recordings,
and holds the potential to transition the traditional elec-
trocardiogram (ECG) into a new, patient-specific imaging
modality [1]. Given torso surface ECG voltage record-
ings t, and a transfer or lead field matrix K, the epicar-
dial potential-based inverse problem of electrocardiogra-
phy seeks to reconstruct the heart surface voltages h from
the linear system Kh = t, where K ∈ IRm×n, h ∈ IRn,
and t ∈ IRm. In practice t contains the true torso voltages
t∗ plus noise e, or t = t∗ + e.

Despite its great potential, the inverse ECG problem is
severely ill-posed, meaning small changes in torso surface
ECG recordings lead to correspondingly large changes in
simulated heart surface voltages. One popular method
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for stabilizing the reconstruction involves Tikhonov reg-
ularization, where the solution to the original equation
Kh = t, is found by solving a regularized least squares
optimization problem

h = argmin

{∣∣∣∣∣∣∣∣Kh− t

∣∣∣∣∣∣∣∣2
2

+ λ2
∣∣∣∣∣∣∣∣Lh∣∣∣∣∣∣∣∣2

2

}
. (1)

In the above minimization problem, additional informa-
tion is introduced into the original inverse problem in the
form of a positive parameter λ and a matrix L, and this
new modified problem is solved for an optimal Tikhonov
solution [2]. For a fixed λ, the Tikhonov solution solves

the system Ah = b, where A =

[
K
λL

]
, and b =

[
t
0

]
.

In zeroth-order Tikhonov (ZOT), the matrix L is the iden-
tity matrix, while in first and second order Tikhonov (FOT
and SOT), L approximates the first and second derivative,
respectively [2]. However, while a Tikhonov solution pro-
vides us with a single deterministic solution, a Bayesian
approach can not only provide us with an equivalent maxi-
mum a posteriori (MAP) estimate, but also an entire prob-
ability distribution that we can evaluate to study sources
of uncertainty. The level of noise in the ECG recordings,
the choice of L, and parameters altering the formation of
the lead field matrix K (such as the model’s governing
equations, mesh discretization [3], and conductivity), all
present sources of uncertainty for the inverse problem of
electrocardiography.

In this study, we indirectly analyze the level of credi-
bility in Tikhonov solutions by deriving equivalent prob-
abilistic Bayesian MAP estimates, and then sample from
the Bayesian posterior distributions to form credible in-
tervals (CIs). Using this approach, we use the concept
of functional band depth [4] to compare differences in
how much of the true solution the 95% CIs capture for
different choices of L regularizers as well as hybrid and
non-hybrid meshes for homogeneous and inhomogeneous
conductivity. In our hierarchical Bayesian formulation,
we show how the noise variance in torso surface voltage
recordings can be estimated (if it is unknown) for a given
Tikhonov solution, leading to the efficient implementation
of a block-wise Gibbs sampler. Furthermore, for severely
ill-conditioned transfer matrices, we introduce the concept
of regularized sampling. Our preliminary results show that
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our algorithm accurately predicted the true noise variance
82% of the time to within 8% absolute error, giving some
initial verification for our method. Additionally, we found
that the 95% CIs for FOT and SOT captured between 11%
and 42% more of the true heart voltages than ZOT, sug-
gesting FOT and SOT may help reduce uncertainty for the
inverse ECG problem. In summary, we propose a new
method that quantifies the level of uncertainty via CIs in
Tikhonov solutions, and use it to compare different regu-
larizers and meshes as well.

2. Methods

We describe how we obtained a Tikhonov solution, our
Bayesian approach to uncertainty quantification for this
Tikhonov solution, and our numerical simulations.

2.1. Obtaining a Tikhonov Solution

Based on earlier inverse ECG studies [3], we used
a quasi-static approximation of Maxwell’s equations to
model the voltage potential u in the torso using Laplace’s
equation, ∇ · (σ(x)∇u(x)) = 0, where σ denotes a con-
ductivity tensor. We assume no current leaves the torso
surface into the air, and consider the heart surface as a
Dirichlet boundary. We discretized this model using fi-
nite elements to form the equation Kh = t [3]. We then
solved the inverse problem via Tikhonov regularization as
in Equation (1), using the L-curve method [5] to find the
optimal λ.

2.2. Bayesian Approach

In the Bayesian setting, all unknown parameters are
modeled as random variables [2,6]. Because the noise e in
the torso surface ECG recordings is unknown, we model
the noise as being identical and independently distributed
(IID) with zero mean and variance ve, E ∼ N (0, veI), to
form the likelihood density

π(t|h, ve) ∝ v−m/2e exp

(
− 1

2ve
||Kh− t||22

)
. (2)

In the Bayesian formulation, the prior acts as the regu-
larizer, and introduces outside information in the same way
that λ and L introduce outside information in Tikhonov
regularization. For example, in first order Tikhonov (FOT)
regularization, L approximates the first spatial derivative,
and choosing this L assumes that the epicardial voltage
distribution should be relatively “flat” [2]. An analogous
probabilistic version of this assumption may state that the
difference in voltage between two neighboring positions
on the epicardial surface in two dimensions (2D), Hi and
Hi−1, is a random variable Qi, Hi − Hi−1 = Qi, where
Qi ∼ N (0, vh) for all i [6]. Likewise, if our prior be-
lief is that epicardial heart voltages should be “smooth,”

we would use an L in Tikhonov regularization that ap-
proximates the second spatial derivative [2], resulting in
second order Tikhonov (SOT). In the Bayesian sense, we
can model this as a probabilistic 2D Laplacian stencil as
Hi+1 − 2Hi +Hi−1 = Qi.

For both of the aforementioned 2D stencils, and for any
arbitrary choice of L, we may generalize the results as a
matrix system, where Z = LH = Q. Consequently, Q
and Z are both IID with similar multivariate Gaussian dis-
tributions [6], and we can therefore write

π(z = Lh|vh) ∝ v−n/2h exp

(
− 1

2vh
||Lh||22

)
. (3)

Using Bayes’ rule, π(z|t) ∝ π(t|z)π(z), we can easily
combine Equations (2) and (3) to get

π(z|t) ∝ exp
(
− 1

2ve
||Kh− t||22 −

1

2vh
||Lh||22

)
. (4)

Thus, to obtain a MAP estimate for h equal to the deter-
ministic Tikhonov solution, we can see this will only occur
in Equation (4) when we factor out a ve term, and observe
that λ2 = ve

vh
. We thus rewrite Equation (4) as

π(z|t) ∝ exp
(
− 1

2ve

(
||Kh− t||22 + λ2||Lh||22

))
. (5)

At this point, if the variance ve in the noise is known,
we can sample from Equation (5) for h as described in
section 2.2.1. However, if the variance ve is unknown for a
multivariate normal distribution, then it can be modeled as
an inverse gamma (IG) distribution with a shape parameter
α and scale parameter v0, as ve ∼ IG(α, v0) [6], or

π(ve;α, v0) ∝ v−α−1e exp

(
−v0
ve

)
. (6)

In this case, the joint PDF π(z, t, ve) can be written as
the product of Equations (2), (3), and (6), with the relation-
ship that vh = ve

λ2 . This gives
π(h, t, ve) ∝ (7)

exp

(
− 1

2ve

∣∣∣∣∣∣∣∣Ah− b

∣∣∣∣∣∣∣∣2
2

− (α̃+ 1) ln(ve)−
v0
ve

)
where we define α̃ = m+n

2 +α, and with A and b defined
previously in reference to Tikhonov regularization in sec-
tion 1. In Equation (7), we make the key assumption that λ
has already been found in obtaining an optimal Tikhonov
solution, and is therefore a known variable.

From here, if we are able to “observe” the torso poten-
tials t, and the variance ve, then the conditional density for
h is given as in Equation (5). Likewise, if we are then able
to “observe” t and h, then the posterior variance ve|t,h
can be written as an IG distribution with new shape and
scale parameters α̃ and ṽ0 as ve|h, t ∼ IG(α̃, ṽ0):

π(ve|h, t) ∝ v−α̃−1e exp

(
− ṽ0
ve

)
, (8)
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where ṽ0 = 1
2 ||Ah− b||22 + v0.

Although we can determine a MAP estimate for ve
based on the properties of the IG distribution, this MAP
estimate depends heavily on the original hyperparameters
α and v0 in Equation (6), and we therefore describe a novel
method for setting these parameters when a good estimate
of the variance ve is unknown. First, let v̂e and µ̂ represent
the unbiased estimators for the variance and mean of the
noise e. The unbiased variance can be written as

v̂e =

(
1

m− 1

) m∑
i=1

(ei − µ̂)2 . (9)

Since we previously assumed that the noise had zero
mean, the unbiased mean estimator should also be approx-
imately zero, µ̂ ≈ 0. Therefore we can approximate the
unbiased variance as

v̂e ≈
(

1

m− 1

)
||e||22. (10)

In choosing the optimal Tikhonov solution hλ, the Mo-
rosov discrepancy principle selects this solution such that
||Khλ − t||2 ≈ ||e||2 [7]. If we are confident in our al-
gorithm for choosing the optimal Tikhonov solution via
the L-curve or some other method (besides the discrepancy
principle), we may apply Morosov’s discrepancy principle
in reverse here and Equation (10) becomes

v̂e ≈
(

1

m− 1

) ∣∣∣∣Khλ − t
∣∣∣∣2
2
. (11)

Next, we can incorporate this result as prior informa-
tion by setting the mode of the conditional variance, ve|t,h
equal to the result in Equation (11). With the mode of the
conditional variance given as ṽ0

α̃+1 , we set this equal to the
unbiased estimate v̂e in our model:

ṽ0
α̃+ 1

=

(
1

m− 1

) ∣∣∣∣∣∣∣∣Khλ − t

∣∣∣∣∣∣∣∣2
2

, (12)

With ṽ0 and α̃ previously defined, we can solve Equa-
tion (12) for the original scale parameter v0, and choose
the original shape parameter α such that v0 is greater than
zero. In our simulations, we chose α = 20.

2.2.1. Regularized Sampling

After finding a Tikhonov solution, Figure 1 illustrates
the Gibbs sampling algorithm to generate an ensemble of
heart voltages h and noise variance ve (denoted as v in
Figure 1) realizations which we used to calculate credible
intervals (CIs). First, since the Bayesian MAP estimate
equals the Tikhonov solution in our derivation, we consider
the Tikhonov solution as the first sample h(0). Next, if the
variance is unknown, we determine a MAP estimate for
the noise variance by setting the hyperparameters v0 and
α as in Equation (12), and set this MAP estimate equal

Figure 1. Overview of block-wise Gibbs sampler.

to our zeroth variance sample v(0)e . Then, we form the
heart of the block-wise Gibbs sampling algorithm by it-
eratively sampling from the conditional densities given in
Equations (4) and (8) until we have collected N total sam-
ples. Once the algorithm is complete, we sorted the sam-
ples into percentiles to determine the 95% CIs. Note that in
our algorithm, we dealt with the case where we assumed
the noise variance is unknown. If it is known, we could
easily forgo the block-wise Gibbs sampling algorithm, and
instead sample iteratively (or in parallel) from Equation (4)
for heart voltage realizations as described next.

As described in Kapio [7], we may sample from the mul-
tivariate Gaussian distribution in Equation (4) as:
1. Sample ξ ∼ N(0,

√
vI),

2. Set h = A† (b+ ξ),
where, in the above two steps, we simplify our notation for
the ith sample to write h for h(i) and v for v(i−1), and †
denotes the pseudoinverse.

However, when the K that comprises the matrix A is
severely ill-conditioned (K had a condition number of
1017 or more in our simulations), Step 2 above may re-
quire special care, as the λ in Tikhonov regularization may
not be enough to produce stable results. Step 2 is essen-
tially a new inverse problem, similar to our original in-
verse problem Kh = t, except that K, and t are now re-
placed with A and the value b+ ξ. Furthermore, if ξ = 0,
Step 2 will produce a result equal to the Tikhonov solu-
tion. Thus while the goal in the original inverse problem
was to find the value h closest to the true solution, an anal-
ogous goal that we propose for the sampling in Step 2 is
to find the value h closest to the Tikhonov solution hλ,
which is presumably known. To achieve this, one could
easily perform singular value decomposition (SVD) on A,
and determine the sample from the k largest singular val-
ues that minimize the difference between hk and hλ as
k = min{||hλ −

∑k
j=1

uT
j b

σj
vj||2}, and h = hk, with

k ≤ n. However, performing the SVD may be infeasi-
ble for large scale problems, and in this paper we there-
fore used the conjugate gradient-least squares (CGLS) al-
gorithm, and used the properties of semi-convergence to
terminate at the iteration k that minimized the difference
between hk and hλ. While we used the CGLS algorithm

531



in this paper, we note that other Krylov subspace algo-
rithms, such as GMRES, might also be feasible.

2.3. Numerical Simulations

We ran 50 simulations at three different noise levels (at
||e||2
||t∗||2 = 1%, 3%, and 5%). For each individual simula-
tion, we generated a total of 4,000 heart voltage and noise
variance samples, and calculated the 95% credible inter-
vals (CIs) for heart voltage. Using the concept of func-
tional band depth [4], we calculated the percentage of the
true heart voltage that fell within the 95% CIs for different
regularizers (ZOT, FOT, and SOT), hybrid and non-hybrid
meshes (Figure 2), and conductivity combinations to give a
total of 3×2×2 = 12 different experimental combinations
for a single noise level, ||e||2||t∗||2 .
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Figure 2. Non-hybrid (triangle only) and hybrid (triangle-
quadrilateral) meshes.

3. Results and Conclusion

Figure 3 shows the results of individual simulations for
zeroth and second order Tikhonov (ZOT and SOT) (top left
and top right), and the mean percentage of the true heart
voltages that fell within the 95% CIs at ||e||2||t∗||2 = 3% with
homogeneous (bottom left) and inhomogeneous (bottom
right) conductivity. While mesh discretization and con-
ductivity had some effect on the results, the choice of L in
Tikhonov regularization had the greatest impact on how
well the CIs captured the true solution at all noise lev-
els. Across all noise levels, conductivities, and mesh dis-
cretizations, the mean 95% CIs from first order Tikhonov
(FOT) and SOT always captured 11% to 42% more of the
true heart voltages than ZOT. Out of all simulations com-
bined, SOT on a hybrid mesh captured more than the other
regularizer and mesh combination 57% of the time. Fur-
thermore, our method for estimating the noise variance in
block-wise Gibbs sampling accurately predicted the true
noise variance 82% of the time to within 8% absolute er-
ror, demonstrating our method produces meaningful re-
sults. In summary, our results suggest a method for quan-
tifying uncertainty in Tikhonov solutions, and also suggest
that FOT and SOT may provide more accurate credible in-
tervals than ZOT.
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Figure 3. Example and summary results. Top left and top
right figures compare the zeroth order Tikhonov (ZOT) re-
construction on a non-hybrid mesh with the second order
Tikhonov (SOT) reconstruction on a hybrid mesh in refer-
ence to the true voltages. Grey areas show the 95% credi-
ble intervals (CIs) in both figures. The bottom left and bot-
tom right figures compare the mean percentage (of 50 sim-
ulations) of the true solution that falls within the 95% CIs
for zeroth, first, and second order Tikhonov on non-hybrid
(blue) and hybrid (red) meshes. Simulations in the bottom
left figure were ran with homogeneous conductivity, while
the bottom right figure used inhomogeneous conductivity
values.
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