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Abstract 

Fetal heart rate (FHR) recorded within the 
cardiotocography (CTG) measurement is currently the 
main method to evaluate fetal health state during 
delivery. The CTG provides valuable information about 
fetal behavior as a reaction to stressful events (hypoxic 
episodes).  

The presented paper proposes to use data driven 
analysis of FHR – the clustering analysis of features 
derived automatically from the signal using novel method 
of signal approximation called SAX. Even though the 
clustering is well grounded in signal processing tasks in 
the field of FHR research it is used sparingly due to high 
inter-individual variability of fetuses and difficulties to 
link different temporal events. 

Data from the open access CTU-UHB database (552 
CTG records) available at the Physionet are used and the 
30 minutes segments at the end of the first stage of labor 
are analyzed.  

The classification based on clustering achieved 
sensitivity of 58.7% and specificity of 69.4% for the two 
class classification – well comparable to other pH based 
studies. Sensitivity was improved to 71.4% for six cluster 
settings – thus suggesting different classes of FHR. This 
is in contrast with objective evaluation (two classes 
usually determined with pH threshold) and three classes 
(used by clinicians for evaluation). Nevertheless to 
properly describe the link between these clusters and 
clinical evaluation robust interpretation is still necessary. 

1. Introduction

Cardiotocography (CTG) refers to the simultaneous 
recording of fetal heart rate (FHR) and uterine 
contractions (UC) using ultrasound Doppler transducers or 
scalp electrodes for the former and external belts or 
intrauterine catheters for the latter.  

CTG succeeded intermittent auscultation as the main 
tool for providing information about fetal behavior and 
wellbeing with a hope to improve the quality of 
information compared to its predecessor. The sole purpose 
of CTG is to give hints to clinicians for timely intervention 

to prevent adverse long term consequences caused by 
intrapartum asphyxia.  

However 40 years after the introduction of CTG into 
clinical practice the initial enthusiasm was replaced by 
skepticism and the CTG is now being blamed for an 
increased rate of cesarean sections [11].  

Moreover, it turned out that the interpretation of CTG 
is far from being a trivial task, resulting in high inter and 
intra-observer variability among clinicians [1]. Despite all 
these controversial findings, CTG is still the prevalent 
method for intrapartum fetal surveillance [2] with its 
interpretation relying primarily on visual assessment of the 
CTG recording. The interpretation is based typically on 
the guidelines issued by the International Federation of 
Gynecology and Obstetrics (FIGO) guidelines [3] while 
several national updates and tweaks have also been 
released [4]. 

Many features were tested, e.g. time-domain features, 
frequency-domain features, time-frequency domain 
features and nonlinear ones [5, 12]. For the classification 
purposes, many machine learning paradigms have been 
tested starting from the simple ones such as k-nn to more 
complicated ones such as Support Vector Machines 
(SVMs) [7] artificial neural networks (ANNs) [6] and 
Hidden Markov Models (HMMs) [8] to name just a few.  

2. Methods

2.1. Signal pre-processing 

The Fetal Heart Rate signal (FHR), no matter the 
method that is used for its acquisition (ultrasound Doppler 
probe or a scalp electrode) is contaminated by a lot of 
artifacts – see Figure1a). As a result a preprocessing step 
is deemed necessary before any attempt to extract useful 
information in the form of a feature set.  

For removing artefacts we used a method according to 
Bernardes [9].  First, we determined a stable segment, 
defined as a segment of 5 consecutive beats, wherein the 
total error is less than 10 bpm. If the difference is greater 
than 25 bpm, the spline interpolation between the last 
sample of the previous stable segment and the first sample 
following a stable segment is performed. Spline 
interpolation, was chosen because in this case 
complements the data better than linear interpolation. 
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Figure 1. Filtration of the signal, interpolated segments 
 in red. 

 
2.2. Data used 

No All the experiments were carried out using the 
CTU-UHB database [10]. The database consists of 552 
records acquired using STAN and Avalon devices 
between years 2009 and 2012 at the obstetrics ward of the 
University Hospital in Brno, Czech Republic. The 
majority of the recordings were acquired using an 
ultrasound probe (412 records), and all recordings were 
regularly sampled at 4Hz. A detailed description of the 
CTU-UHB is provided in [10].  

 
2.3. SAX 

The most common method of approximating time 
series is PAA. After dividing the segments in each 
segment, we calculate the mean or median. The number 
will characterize the entire segment. Then it will be added 
to any interval, according to previously established lines. 
Intervals are assigned the integers from 1 to K, where K 
is the number of predefined intervals. The entire database 
is then expressed by a single matrix of integers. Column 
specifies the number of signals, rows are individual 
features. This method is very simple to calculate and 
nicely captures the changes in the signal. The 
approximation also suppresses artifacts that could have 
not been removed by filtration. 

SAX (Symbolic Approximation) [13,14] is the main 
method of symbolic expression time series and currently 
is often used in time series analysis. It meets the 
requirements for sufficient dimension reduction in the 
time-series and enables the possibility to calculate the 
distance between the time-series. Representation by sax 
significantly accelerates the process of acquiring 
knowledge from data, while preserving the accuracy of 
the results. SAX is based on the PAA, but instead of 
numbers representing each segment, symbols are used. To 

obtain a symbolic representation of time series, first 
perform the transformation by PAA. Each segment can be 
expressed as a real number, it is therefore necessary to 
discretize these levels. From the histogram of the time 
series boundary intervals can be obtained. 

 

 
Figure 2. Principle of SAX. 

 
One of the most important features of SAX is that it 

allows to lower-limit distances measures. This means that 
the distance between the approximated lines is always 
less than the distance between rows in the original shape. 
This property is useful to determine the error and the 
acceleration calculation [15].  

 

 
Figure 3. CTG signal represented by SAX. 

 

 
Figure 4. Disribution of characters in SAX. Normal class 

above, pathological class below. 
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2.4. Hierarchical clustering 

The result of this method is called dendrogram, 
which has the form of a binary tree. It is up to the user to 
interpret the dendrogram. The algorithm progresses from 
bottom-up or top-down. Either at the beginning of each 
element represents a cluster based on similarity to 
gradually merges with other clusters (agglomerative 
clustering), or all the data in one cluster, which is divided 
(divisive clustering). The procedure is repeated until the 
desired texture is reached [16]. 

2.5. K-means 

K-means is a very popular iterative algorithm. The 
goal of k-means is to find clusters, where the minimized 
error, defined as the sum of the distances of elements 
from the center of your cluster. At the beginning of the 
algorithm to randomly select the center of clusters, their 
number is determined by the value of K. Based on the 
smallest distance is assigned to elements of the clusters. 
The next step is recalculated center cluster. The procedure 
is repeated until there are changes. The advantages of this 
algorithm are its simplicity and efficiency, but the user 
must know the number of clusters and largely depends on 
the initial start [17].  

K-means algorithm is very efficient method of 
clustering. It can be used for multi-dimensional data, such 
as time series. Each signal sample is considered a variable 
corresponding element. This is an iterative algorithm with 
a relatively high computational cost. K-means is usually 
chosen randomly initial centers of clusters, clusters may 
therefore be created from the same data differ. Better 
results can be achieved properly pre-selected centers, or 
we can repeat the algorithm several times and choose the 
best result. We chose the second option, the calculation 
always repeated several times. K-means can also use 
various kinds of distances, with us as the most successful 
appear to be correlation and Euclidean distance.  

Cluster can be either approximation signals (adjusted 
to the same length), frequency elements in the dictionary 
LZ77 compression, or the frequency of groups of 
characters derived from frequency analysis.  
The goal of clustering is to divide the signals into two 
groups, normal and pathological. The data structure can 
be formed by more than just groups of two, so we tried 
the method with different numbers of clusters. 
Pathological and normal signals may comprise more than 
one cluster. In each cluster formed calculate frequency 
components of normal and pathological. Clusters with the 
highest frequency normal signal then mark as normal and 
the other pathological.  

Since each signal is represented by multiple symptoms, 
k-means works in a multidimensional space. In order to 
render the results, we used principal components (PCA), 
which reduces symptoms of us. When two components, 

the individual signals can be plotted as points. 

3.  Results 

The calculation of k-means was performed with 
different settings. As k-means determines the initial 
centers of clusters randomly we repeated the calculation 
of a total of 100 times and chose the result with the 
smallest total distance within clusters. This value will be 
considered as an objective function that determines the 
quality of the clusters.  

Results of aggregation depends on the parameters. The 
key is to properly determine the length of the window and 
the overlay boundaries of intervals and the number and 
not the least measure of distance. We first clustered 
signals approximated by PAA.  

Pathological signals are indicated as a positive result, 
normal signals are therefore negative finding. From the 
generated clusters, we determined the numbers of positive 
and negative elements, and compared them with the 
results of classification by pH values. Procedure with 
Euclidean distances repeated for different numbers of 
clusters. It turned out that the best number of clusters is 6, 
wherein the normal signal comprises 3 clusters, and 
clusters 3 pathological forms.  

The best overall results were reported from the 
division to 6 clusters as shown in Table 1 and Figure 5. 
The sensitivity and specificity achieved were 63.6 % and 
71% respectively.  

 
 

Table 1. Results using SAX features and k-NN 
 

 ClassN ClassP 
Normal  28 16 
Pathological 147 361 

 
 
4.  Conclusion 

In this work we have shown, that the clustering approach 
to the CTG analysis is a viable approach. Additionally 
using the features acquired by SAX which are robust, 
enables us to create classifier without input from 
clinicians. 

Acknowledgements 

This work was partially supported by the research project  
by Czech Grant Agency project number 14-28462P 
entitled Statistical methods of intrapartum CTG signal 
processing in the context of clinical information and by 
Grant No. NT11124-6/2010 funded by Ministry of 
Healthcare of the Czech Republic.  
 

623



 

 

Figure 5. Results based on 6 clusters using SAX features. 
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