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Abstract

The segmentation of the primary heart sounds within a
phonocardiogram (PCG) is an essential step in the classi-
fication of pathological cardiac events.

Recently, probabilistic models, such as hidden Markov
models, have been shown to surpass the segmentation ca-
pabilities of previous methods. These models are further
improved when a priori information about state duration
is incorporated into the model, such as in a hidden semi-
Markov model (HSMM).

This paper addresses the problem of the accurate seg-
mentation of heart sounds within noisy, real-world PCGs
using a HSMM, extended with the use of support vector
machines (SVMs) for emission probability estimation.

A database of 123 patients with over 20,000 labelled
heart sounds were used to train and test the algorithm.
Best reported alternatives in the literature were also imple-
mented and tested on the same data. On out-of-sample test
data, our method outperforms previously reported meth-
ods with sensitivities of 94.9% and 91.0% and positive pre-
dictivities of 95.2% and 90.9% for first and second heart
sounds respectively.

1. Introduction

The identification of the primary heart sounds in the
phonocardiogram (PCG), or heart sound segmentation, is
an essential step in the automatic analysis of heart sound
signals. The primary heart sounds refer to the first and
second heart sounds, S1 and S2. S1 occurs immediately
after the QRS complex of the ECG, while S2 occurs at ap-
proximately the end of the T-wave [1], shown in Fig. 1.
Accurate identification of these sounds allows subsequent
classification of pathologies in the PCG.

Segmentation becomes a difficult task when PCGs are
corrupted by in-band noise. Common noise sources in-
clude talking, motion artefacts, background noise from
machinery and physiological sounds (such as clicks, in-
testinal activity, breathing, and additional cardiac activity
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Figure 1. Example of an ECG-labelled PCG recording.
The ECG, PCG and the four states of the heart cycle (S1,
Systole, S2 and Diastole) are shown. The Q wave, R-peak
and T-wave end point are also labelled in the ECG as ref-
erences for defining the S1 and S2 onsets.

such as heart murmurs, S3 and S4 sounds).
Approaches to heart sound segmentation have included

envelope and energy threshold-based approaches [2, 3],
neural networks [4] and most promisingly, hidden Markov
models (HMMs) [5–7]. The work presented in this ar-
ticle builds on that of Schmidt et al. [7] by exploring a
wider range of features and a machine learning approach
to deriving the emission probabilities. We compare our re-
sults to those of Schmidt et al. [7] on a substantially larger
database, collected in a real-world setting.

2. Methods

2.1. Dataset

The dataset consisted of 405, 20-30 s, synchronous PCG
and ECG recordings from 123 adult patients attending the
Massachusetts General Hospital for cardiac screening, 83
of whom were found to have murmurs [8]. A Welch-Allyn
Meditron Elite electronic stethoscope was used.
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In order to ensure accurate reference points for the S1

and S2 sounds in the PCG, poor quality synchronous ECG
signals were excluded. The quality of the ECG signals was
computed using the classifier derived by Behar et al. [9].
By computing the average probability of being low-quality,
108 ECGs were found to be below a probability of 0.5
and excluded. From the remaining recordings, 150 were
randomly selected for a training set (10,807 heart sounds),
leaving 147 recordings (10,975 sounds) for the test set. It
was ensured no recordings from a single patient appeared
in both training and test sets.

The reference positions of the S1 and S2 sounds were
found in the synchronous ECG recordings.

The S1 reference positions were identified as syn-
chronous with the ECG R-peak, found using a standard
open source peak detector applied to the ECG [10]. In
addition, these positions were used to find the reference
heart rate. The S2 reference positions were identified as
the point synchronous with the end of the ECG T-wave us-
ing the method of Vazquez-Seisdedos et al. [11].

The S1 and S2 durations were set to their mean, ex-
pected duration, derived in Section 2.2. The periods be-
tween the S1 and S2 sounds were labelled as systole, while
those periods between S2 and S1 were labelled as diastole.
An example of a labelled PCG recording is shown in Fig. 1.

2.2. Hidden Semi-Markov Models

HMMs are a statistical framework used to describe se-
quential data. They operate by making inferences about the
likelihood of being in, transitioning between, and seeing
observations in certain discrete hidden states. In this case,
the HMM is first order, with the hidden sequence consist-
ing of the four states of the heart, while the observations
are features derived from the PCG.

An HMM can defined as a function of A, B and π,
where A is the transmission matrix, governing the prob-
ability of transitioning between states, B is the emission
or observation distribution, defining the probability of see-
ing an observation in each state, and π is the initial state
probability distribution [12].

The utility of the HMM for heart sound segmentation
is finding the most likely state sequence, given a HMM,
λ = (A,B, π), and an observation sequence, O. This is
derived using a dynamic programming method called the
Viterbi algorithm [12].

A HMM does not incorporate information about the ex-
pected duration of each state, meaning that the state dura-
tions are governed only by the self-transition probabilities.
This is poorly suited for PCG analysis as the heart sound
duration is governed strongly by the cardiac dynamics. In
order to improve the duration modelling, an extra parame-
ter is introduced:

Let us define the new model as λ = (A,B, π, p), where
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Figure 2. Timing distributions of the four major heart
states shown as the fraction of the entire heart cycle for
a HR of 60 beats per minute.

p = {pi(d)} is the explicitly defined probability of remain-
ing in state i for duration d. This is then called a hidden
semi-Markov model (HSMM) [13].

A key component of the HSMM for heart sounds is an
estimate of the amount of time expected to remain in each
state. In this case the four states are: 1) S1 2) systole (be-
tween S1 and S2), 3) S2 and 4) diastole (between S2 and
S1). These durations were modelled as Gaussian distribu-
tions, following Schmidt et al. [7].

From the largest study of the duration of S1 and S2 [14],
the duration distributions of these sounds, DS1

and DS2
in

seconds, were defined as:

DS1
∼ N

(
0.146, (0.038)

2
)

(1)

DS2
∼ N

(
0.104, (0.038)

2
)

(2)

The QS2 time, or electromechanical systole, is the du-
ration from the Q-wave in the ECG to the start of the S2

sound. The linear relationship between HR and the QS2

time [15] can be used with knowledge of DS1
and DS2

to
derive the systolic and diastolic durations of a heart cycle,
given the HR. Therefore, the systolic and diastolic dura-
tions, Dsys and Ddias, can be found using:

Dsys = QS2 −DS1
(3)

Ddias = Dcycle −QS2 −DS2
(4)

whereDcycle is the duration of a HR-derived cardiac cycle.
These duration distributions can be seen in Fig. 2.

2.3. Support Vector Machine HSMM

Earlier work on a HSMM-based approach to PCG seg-
mentation used Gaussian distributions [7] to derive emis-
sion probabilities which do not allow accurate discrimi-
nation between states. Here we introduce SVM-derived
observation probability estimates instead.

The SVM is a supervised binary classifier that at-
tempts to find a separating hyperplane between two sets
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of data [16]. A SVM has two parameters: γ, which defines
the width of the Gaussian kernel and influences the flexi-
bility of the classifier; and C, which controls the width of
the margin each side of the separating hyperplane. This in-
fluences the classifier’s misclassification tolerance. Cross-
validation was used to set γ and C (see Section 2.5).

A one-vs-all approach was implemented using the LIB-
SVM library [17], training one SVM for the observations
from each state in the model. The probability of a state j,
ξj , given each observation at time t, bj(ξj |Ot) was derived
using the method derived by Wu et al. [18], used in the
LIBSVM library. Thereafter, the probability of an obser-
vation given a state, bj(Ot|ξj), as needed in the HSMM,
was found using Bayes’ rule:

bj(Ot|ξj) =
bj(ξj |Ot)× P (Ot)

P (ξj)
(5)

where P (Ot) is found from a multivariate normal distri-
bution derived from the training data, and P (ξj) is found
from π, the initial state probability distribution.

The input to the SVM were a combination of features,
derived in Section 2.4.

2.4. Feature Extraction

Before feature extraction, all recordings were down-
sampled to 1 kHz using a poly-phase anti-aliasing filter.
The frequency content of the fundamental heart sounds is
below 500 Hz [19] and hence the Nyquist-Shannon sam-
pling criterion was satisfied.

Former HSMM-based heart sound segmentation meth-
ods used only the homomorphic envelogram [7]. This pa-
per investigated three further features:
1. Amplitude of PCG signal envelope, extracted using the
Hilbert transform [20], motivated by heart sounds gener-
ally having the highest energy in the PCG.
2. The absolute value of the detail coefficients from the
discrete wavelet transform decomposition of the PCG, ex-
tracted using the Daubechies 10 wavelet at decomposition
level 3. This wavelet was chosen due to its similarity in
shape to the primary heart sounds and its centre frequency
of 85.53 Hz, being within the expected range of frequen-
cies within S1 and S2 (10 to 200 Hz) [19].
3. The maximum peak below 200 Hz in the power spectral
density (PSD), found in 0.05 s windows of the PCG with
50% overlap after Hamming windowing. This is motivated
by the majority of the frequency content of the primary
heart sounds being below 200 Hz [19]18], while murmurs
and other pathological sounds have higher frequency con-
tent that extends up to 600 Hz [21].

The feature vectors for each recording were individually
normalised by subtracting their mean and dividing by their
standard deviation.

Table 1. Segmentation performance (Se and P+) for
S1 and S2 for training (grey) and test (dark text). [7]*
indicates performance of [7] using the same features as
described in this article, while SVM-HSMM† indicates
the performance of the SVM-HSMM using the feature
from [7].

Algorithm SeS1 PS1
+ SeS2 PS2

+

[7] 93.0 92.7 87.8 87.0
92.6 92.3 89.0 88.3

[7]* 87.8 85.8 83.2 80.7
88.6 86.0 85.8 83.1

SVM-HSMM† 92.2 92.9 85.7 85.7
93.5 94.1 88.0 87.9

SVM-HSMM 94.8 95.4 88.6 88.5
94.9 95.2 91.0 90.9

Following Schmidt et al. [7], the feature vectors were
down-sampled further to 50 Hz poly-phase anti-aliasing
filter, in order to increase the speed of computation.

2.5. Model Training & Evaluation

The parameters of the HSMM were computed using the
ECG-labelled PCG sequences from the training set of 150
recordings.

In order to optimise the γ and C parameters when using
the SVM-HSMM, the training set was further randomly
split into three equal-sized, cross-validation sets. γ and C
were set as 2n, n ∈ [−0.5, 0, 1, 2], with the parameters that
led to the highest average binary classification accuracy of
the four states over the three cross-validation folds being
chosen as final values to be used in testing.

An S1 sound was labelled correctly identified if the start
of the segmented S1 sound was found to be within 100 ms
of the R-peak of the ECG. This tolerance is based on the
recognised ECG R-peak detection tolerance [22]. An S2

sound was labelled as correctly segmented if the centre of
this S2 sound was found to be within 100 ms of the end of
the corresponding T-wave.

3. Results

The results of the SVM-HSMM algorithm on both the
training and test sets, can be seen in Table 1. This ta-
ble illustrates the sensitivity, (Se) and positive predictivity
(P+) for both the primary heart sounds, averaged across
all the recordings in the training and test sets. The results
of the state-of-the-art algorithm, developed by [7], can be
seen in the first line of the table. The results of the SVM-
HSMM algorithm, developed in this paper, can be seen in
the last line of the table.
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4. Conclusions

The SVM-based HSMM can be seen to outperform the
former state-of-the-art algorithm in Table 1. The poor re-
sults of the [7]* algorithm in this table indicate that it is not
the addition of the new features alone that led to improved
performance.

The results from both the SVM-HSMM† and SVM-
HSMM algorithms in Table 1 indicate that it is the addi-
tion of the SVM that led to improved segmentation results,
while the combination of the SVM and the new features led
to best performance. Therefore, the greater discrimination
between states afforded by the SVM classifier’s non-linear
kernel function led to the improved segmentation results.

It can be concluded that the incorporation of the SVM
into an HSMM, based on literature-derived heart sound du-
rations and incorporating Hilbert envelope, wavelet enve-
lope and PSD features, is able to accurately segment the
fundamental heart sounds within a large dataset of noisy,
real-world PCGs.
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