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Abstract 

It is estimated that 3.2 million people have developed 
atrial fibrillation (AF) in the United States and 30% of 
AF patients are unaware of their diagnosis (silent AF). 
We tested a new technology for contactless detection of 
AF based on facial video recordings in patients 
undergoing electrical cardioversion for AF. The proposed 
technique uses the facial video signal to extract the beat-
to-beat variations of the skin color reflecting the cardiac 
pulsatile signal. We developed the concept of Pulse 
Harmonic Strength (PHS) to capture AF patterns from 
this signal. Also, we quantified the variability of the heart 
rate and pulse rate using additional measurements of 
heart rate variability. Eleven subjects (65±6 years, 8 
males) were enrolled in the study and 407 epochs of 15 
sec. were acquired simultaneously with ECG and facial 
video signals. PHS was associated with a 20% detection 
error rate of AF in reference to human interpretation 
while the error rates of the automatic ECG-based 
measurements ranged between 17% and 29% across the 
investigated HRV parameters. 

1. Introduction

Atrial fibrillation (AF) represents a significant health 
and economic challenge because it is a major cause of 
stroke, heart failure, emboli, diminished quality of life, 
and death. It is accepted worldwide that approximately 
8% of the aging population develop AF based on the 
clinical trials conducted this past decennia: 8.3% in 
Rotterdam study (age >55 yrs) and 7.9% in the Screening 
for Atrial Fibrillation in the Elderly (SAFE) trial (age>65 
yrs).[1-2] Importantly, the “Prevention of Atrial 
Fibrillation After Cardioversion” trial (PAFAC) have 
shown that 54% of the 188,634 ECGs recorded in 1,033 
patients were asymptomatic AF episodes (silent AF), and 
70% of the 191,103 recordings from 383 patients enrolled 

in the ‘Suppression of Paroxysmal Atrial 
Tachyarrhythmias’ trial (SOPAT) suffer from the silent 
form of the disease. Therefore, it is of paramount 
importance to develop novel monitoring technologies that 
could enable ubiquitous monitoring and diagnostic of 
individuals for AF. Currently, the mobile cardiac 
outpatient telemetry systems are available but these 
technologies rely on standard ECG recording systems 
which require a physician’s prescription and hence the 
presence of a symptomatology.  

We propose to evaluate a method to extract variability 
of pulse from a new non-contact video-based technology, 
so–called facial videoplethysmography (VPG) [3,4], as an 
inexpensive, safe, and easily portable solution to the 
challenge of AF diagnosis and prevention. It is expected 
that an early detection of AF will maximize the use of 
current therapeutic strategies, improve AF prevention, 
reduce mortality and morbidity, and finally improve 
quality of life of AF patients. 

2. Method

2.1. Videoplethysmography and pulse 
harmonic strength 

The pioneering work on non-contact video monitoring 
was developed for the monitoring of respiration and heart 
rate using digital RGB cameras. The basic concept of 
VPG is to find the observed RGB traces associated with 
the heart activity pumping blood to and from the face. It 
was observed that the green channel of the RGB signal 
features the strongest plethysmographic signal because it 
corresponds to the absorption peak of ambient light by 
hemoglobin. Poh M.Z. et al. [6] improved the accuracy of 
such method by applying blind source separation using 
independent component analysis and incorporating face 
tracking to automatically capture the face of a single or 
multiple patients. This type of monitoring was recently 
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expanded by the same group to include measurements of 
other parameters such as the Heart Rate Variability 
(HRV) based on the independent component analysis 
approach. [7].  

In our method, we implemented a set of pre-processing 
steps during which a region of interest (ROI) is selected 
in each frame; pixels in each ROIs are then spatially 
averaged to create a time-series signal. This green trace is 
detrended and band-pass filtered within the frequency 
range of human heart rate. Cubic interpolation is then 
applied to up sample the signal. Constrained independent 
component analysis is then computed to extract 
oscillatory signals within the physiologically-acceptable 
range. This process is applied on a continuous basis and 
coupled with peak and valley detection algorithm to 
ultimately extract the pulse rate on a beat-to beat basis. 
[3]. 

A power spectral density is computed across all 
frequencies within the VPG signal to facilitate an 
identification of a fundamental frequency and at least its 
first harmonic. Pulse harmonic strength (PHS)” is a ratio 
of signal strength at the fundamental frequency and 
harmonics to the strength of a base signal. A 0.2 Hz 
frequency band around the fundamental and its harmonics 
is considered.   

 

 
Figure 1. Panel A is a picture of the Holter recording 

device (Mortara Instruments, Milwaukee, WI) used to 
record the 12-lead ECG signals that includes the video-
ECG synchronizing device (located on the right of the 
ECG recorder). Panel B is a picture of the cardioversion 
room where the web cam is mounted on a pole above the 
head of the patient. The laptop stores the video signal 
throughout the cardioversion procedure.  

 
 The power of the fundamental frequency and its 

harmonic reasonances between 0.05Hz and 3 Hz are 
integrated and denoted ௦ܲ௜௚௡. The power in all remaining 
bands are integrated separately denoted ௡ܲ௢௜௦ . The pulse 
harmonic strength is therefore given by the ratio: 

ܵܪܲ ൌ
௉ೞ೔೒೙
௉೙೚೔ೞ

	     with     ௡ܲ௢௜௦ ൌ ௧ܲ௢௧௔௟ െ ௦ܲ௜௚௡  

Where ௧ܲ௢௧௔௟ is the total energy of the signal in the 
frequency band of interest. Therefore, one expects PHS to 
measure the total strength of the cardiac pulsatile signal. 
The highest the PHS value the less variability is present 

in the VPG-based pulsatile signal.  
 

2.2. Study design 

We enrolled adult AF patients who underwent direct 
current electrical cardioversion in the Electrophysiology 
Laboratory at Strong Memorial Hospital (Rochester, NY). 
During the procedure, a RGB web camera (Microsoft 
LifeCam Cinema, Microsoft Inc., Redmond, WA) was 
placed above the head of the patients (when supine) at a 
distance of 1 meter. Camera was connected to a laptop 
(Dell Precision M6400, Dell, Round Rock, TX) to record 
the face of the patient during the overall procedure (see 
Figure 2, panels B and C). We recorded 12-lead ECG 
using a Holter recorder (Mortara Instrument Inc., 
Milwaukee, MN). The internal clock of the Holter 
recorder and the video camera were not precise enough to 
ensure adequate synchronization. Therefore, we 
developed a synchronization light-sensitive apparatus 
placed between the lead cables and the Holter recorder 
connectors to disconnect the ECG lead from the recorder 
(flat signals) when illuminated by a flashlight (see Figure 
1, panel A). We synchronize the ECG and video signals 
by aligning the time of the first video frame with the 
flashlight to the time of ECG signal interruption 
generated by the apparatus. The video recording device 
was a standard web camera providing 15/30 frames per 
second video signals (66.7/33.3 ms time precision). After 
extracting pulsating signals from each video data signals 
were upsampled to 180 samples per second. The camera 
resolution varied between VGA (640x480) to HD 
(1280x720). The ECG recorder provided a signal with a 
1,000 samples per second and ~5microV amplitude 
resolution. ECG computations were done 180 samples per 
second. The duration of the recordings depended on 
several factors: the procedure success (single and multiple 
shocks procedure) and the time to sedation. 

 
2.3. VPG and ECG processing 

Examples of VPG and ECG signals in patients during 
sinus rhythm and during AF are provided in Figure 2. 
Both signals were processed to extract the beat-to-beat 
pulse and heart rates. A commercial Holter Scanning 
software (HScribe, Mortara Instruments, Milwaukee, WI) 
was used for the analysis of the ECG signal, and a 
MATLAB procedure (Mathworks, Natick, MA) for the 
extraction of the pulse rate from the VPG signals. 

We investigated standard ECG factors used to measure 
heart rate variability: 1) three parameters from the time-
domain: SDNN, RMSSD, and pNN50; and 2) two 
parameters from the Lorenz plot method: SD1, SD2. The 
parameters SD1 and SD2 are robust markers of the 
presence of AF, they measured the short- and long-term 
dispersion of the RR interval durations, respectively. [8]. 
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Finally, the interpretation of the 15-sec ECG signal 
was conducted by ECG experts from the Heart Research 
Follow-up Program (University of Rochester, NY). The 
identification of AF by these experts was considered as 
the gold standard for the interpretation of the 15-sec ECG 
recordings. 

 
3. Results 

The Table 1 and 2 provide the means and 
standard deviations of the heart rate and pulse variability 
for the set of 15-sec epochs of ECG and VPG recordings, 
respectively. We extracted all RR intervals (n=2,676) 
from 143 epochs during AF, and 3543 RR intervals from 
264 epochs during sinus rhythm. The VPG method was 
found to be more accurate during sinus rhythm. Precisely, 
less than 1% (0.9%) of cardiac beats were over sensed by 
the VPG method, and 17.7% were undetected. During 
sinus rhythm, we found 1.3% over sensed beats and 5.0% 
undetected beats during SR. When evaluating the error 
due to VPCs, we counted 23 supraventricular beats and 
VPCs during AF and 259 post-ablation, 20% of VPCs 
were missed by the VPG method in SR and 65% during 
AF. 

 
Figure 2. The two tracings present ECG and VPG signals 
extracted from the video of a patient’s face. The facial 
VPG signals were shifted to have the peak of the first 
pulse aligned with the R waves of the first QRS complex, 
i.e., deletion of the pulse transit time between heart 
contraction and facial blood flow. In both AF examples 
(upper panel) and in sinus rhythm (lower panel) the 
maxima on the VPG signals remain well synchronized 
with R-waves from the ECG signals. 

 
We used a leave-one-subject-out cross-validation to 

estimate the classification error rate (CER) of each 
methods (ECG vs. VPG) for detecting AF rhythm using 

human annotation as reference. This was done by 
selecting the threshold that optimized the epoch-level 
CER for 10 training subjects; computing the empirical 
CER for the epochs from the 1 test subject, using the 
training threshold; and computing the weighted average 
of the 11 subject-specific cross-validated error rates, 
weighted by the number of epochs per subject. This 
procedure was used to estimate the error rate of the 
various parameters at classifying the epochs in the two 
groups AF and sinus rhythm. The results of the process 
delivered the results described in Table 1 and 2 for the 
ECG and VPG signals, respectively.  

 
 
ECG   
(gold standard) 

Sinus AF P value 

HR (bpm) 74±25 55±12 0.008 
SDRR (ms) 128±56 19±23 0.002 
RMSSD (ms) 172±69 19±20 0.002 
SD1 (ms) 124±48 16±13 0.002 
SD2 (ms) 155±58 25±20 0.002 

Table 1: Measurements of heart rate variability from 
ECG-based factors.  

 
VPG  Sinus AF P value 
PR (ppm) 73±23 54±12 0.006 
SDRR (ms) 133±89 51±24 0.002 
RMSSD (ms) 176±90 70±34 0.002 
SD1 (ms) 129±58 51±23 0.002 
SD2 (ms) 139±74 46±17 0.002 

Table 2: Measurements of pulse rate variability from 
VPG-based factors. 
 
 

The estimated error rate (ER) for the PHS 
parameter was equal to 20% while the ERs for the ECG-
based parameters were equal to 17%, 21%, 24%, 25%, 
and 29% for PNN50, SDNN, SD1, RMSSD , and SD2, 
respectively. When considering the ECG-based 
parameters after manual annotation, i.e., non-sinus beats 
were marked and eliminated from the computation of 
HRV parameters, the ER for the same factors were equal 
to 8%, 15%, 15%, 16%, and 16%.  

 
4. Discussion 

We propose a new concept for detecting the presence 
of AF from the video recordings of an individual by using 
a technology extracting the subtle variation of skin color 
attributed to the changes in blood volume underneath the 
thin facial skin (beat-to-beat flushing).  

This is a pioneering work in which one attempts to 
detect the presence of cardiac arrhythmias without any 
direct physical contact with the subject. Estimation of the 
heart rate using facial flushing has been implemented and 
commercialized using various technologies. Most of those 
are embedded in smartphone and tablet using Android. 
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These technologies are limited to an estimated heart rate 
because they do not deliver a beat-to-beat detection of 
cardiac pulse. Our technology goes beyond these existing 
methods by measuring the beat-to-beat pulse [3,4] and 
therefore enabling the measurements of heart rate 
variability and its increase in patients with AF. 

The unique advantage of the technology is its potential 
for being embedded in any device loaded with a digital 
camera delivering video signal with at least 30 frames per 
sec. The current performances of the technology is too 
low (20% error rate) to expect clinical acceptance. Hence, 
we are currently conducting additional investigations to 
better understand how VPG could be used to discriminate 
pulse waves due to sinus of non-sinus cardiac beats and 
improving both their detection and classification. Our 
study showed that ventricular premature beats (VPBs) 
were generally not detected from the VPG signal when 
they were recorded during AF (65% were missed), while 
only 20% were missed during sinus rhythm. The 
speculative explanation for this higher detection rate 
during sinus rhythm involves the role of the 
hemodynamic impact of the arrhythmia, precisely the 
VPBs during AF are expected to generate weaker blood 
pulse signal. This is supported by the documented 
presence of pulse deficit in patients with AF.  

Also, this pulse deficit is likely to play a role in the 
large difference in values of HRV factors between ECG-
based and VPG-based signals during AF rhythm. We are 
currently testing this hypothesis using simultaneous 
recordings of ECG, VPG and standard plethysmographic 
signals during electrophysiology testing procedures.  

Finally and importantly, the head movements of the 
subjects have been one of the most challenging and 
impactful factor in our experiment despite the fact that 
patients were sedated during the procedure. Body 
movement during the cardioversion shocks, snoring 
during sedation, and other unconscious movements of the 
subject’s body were associated with loss of the VPG 
signal. Our algorithm scans the face of the patient and 
extracts a ROI of the facial video images that carries the 
strongest pulsatile signal. Once this ROI has been lost 
because the head changes position and/or its angle with 
the camera is modified (this specific case occurred during 
our study when the pillow of the patient was readjusted 
during sedation), then the subject requires new scanning 
and identification of a new ROI. A face tracking 
algorithm is likely to help stabilizing these measures but 
is not likely to be sufficient to solve the issue of changes 
of the angle between the patient’s face and the video 
camera. 

 
5. Conclusion 

We describe a proof-of-concept study in which we 
analyzed 15-sec facial video and ECG recordings from 
patients during AF and sinus rhythms, i.e., before and 

after successful cardioversion. The proposed technology 
enabled the identification of the presence of AF in 15-sec 
facial video recordings with an estimated error rate of 
20% without any physical contact with the patient. 
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