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Abstract

Introduction. Previously, we demonstrated that certain
patterns of abnormal rapid beats, notably ”short-long-
short-short” (SLSS) patterns, tend to produce action po-
tential block in computer models, and tend to initiate VF
in in vivo canine experiments, consistent with our theory
based on electrical restitution. Here we present evidence
that these same patterns often precede VF in human ECG
recordings. Methods. Thirty-four ECG recordings from
just prior to and during tachyarrhythmic events were ob-
tained from ICDs implanted in several human patients.
The distributions of the first four abnormal RR intervals
prior to arrhythmia onset were fit to single-gaussian and
dual-gaussian distributions. Results. Dual-gaussian dis-
tributions were obtained for the second and third abnor-
mal beats, while single gaussian distributions were ob-
tained for the first and fourth. These distributions are
consistent with the tendency of the SLSS pattern of prema-
ture beats, as well as SLLS and SSSS patterns, to precede
the tachyarrhythmic event, as described by our computer
model. Conclusions. The results provide further evidence
that electrical restitution theory, the basis for both our the-
ory and computer model, although imperfect, is sufficient
to both predict and understand the manner in which pre-
mature beats initiate VF. This understanding may, in the
future, lead to new methods for preventing VF, through the
imposition of stimuli designed to avoid the dangerous pre-
mature beat patterns described in this study.

1. Introduction

An understanding of the mechanisms responsible for the
initiation of rapid, abnormal cardiac rhythms is potentially
very important, because it could lead to the development
of therapies, both electrical and pharmaceutical, that could
prevent these dangerous rhythms before they have a chance
to start. Yet, these mechanisms are poorly understood. One
target of study, when it appears, is the pattern of premature

beats that often precedes the onset of these rapid rhythms.
Our group has been studying these premature beats from

both experimental and theoretical perspectives. In 2003,
Fox et al [1] employed a coupled maps computer model to
show that certain patterns of premature beats, most com-
monly a short-long-short-short (SLSS) pattern, tended to
cause action potential block on cardiac fibers. Block in
fiber systems such as this one is thought to be linked to
the triggering tachyarrhythmias in the actual heart. Otani
[2] developed a theory that explained this pattern of stim-
ulus intervals, and extended the diagnostics of the coupled
maps model so that its predictions could be visualized in
4D ”interval-length” space. We then used this version of
the model during in vivo canine experiments to generate
predictions while the experiments were being performed
[3]. Specifically, the action potential duration (APD) resti-
tution function measured in each animal was inputted into
the model, which then yielded predictions of which types
of premature intervals should cause action potential block.
When the model predicted SLSS patterns were most likely
to produce block, we found that this pattern was also most
likely to induce ventricular fibrillation (VF) in that animal.
Less commonly, the model predicted that an SLLS pattern
was mostly likely to produce block. In this case, we found
that this same interval pattern tended to induce VF, while
the SLSS pattern did not.

In the present study, we are attempting to determine
whether SLSS, SLLS and other types of premature beat
patterns are also related to the onset of VF in humans.
If true, the study would provide evidence that the mech-
anism described by Otani [2] is operative, thus giving us
new clues about what happens in the first stages of VF in-
duction.

2. Methods

Electrocardiograms (ECGs) from seventy-one (71)
episodes of tachyarrhythmia and ventricular fibrillation
(VF) in human patients were obtained from 34 case num-
bers taken from the MADIT II trial [4]. Patients in this trial
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Figure 1. ICD inter-beat interval histograms (in red) for the last S1S1 interval, and the S1S2, S2S3, S3S4, and S4S5
intervals. Upper panels (in blue): the best fit of a single gaussian distribution to the ICD data. Lower panels (in blue): the
best fit of a two-gaussian distribution to the ICD data. The computed p-value appearing in each plot is a measure of the
goodness of fit of each distribution appear above each plot. The smaller p is, the worse the fit. We choose p < 0.05 as the
criterion to reject the corresponding distribution as a fit to the experimental data.

had had a previous myocardial infarction and presented
with an ejection fraction of 30% or less. A number of
these episodes had to be eliminated for various reasons,
leaving 34 ECGs from 32 different case numbers. RR in-
tervals of the abnormal beats immediately preceding VF
were measured manually. In each of the 34 records, we
defined the last normal RR interval preceding the onset of
tachyarrhythmia as the “last S1S1” interval, and then de-
fined the next interval (i.e., the first premature RR interval)
as the “S1S2” interval. Intervals immediately following
the S1S2 interval were then defined, in sequence, as the
S2S3, S3S4 and S4S5 intervals.

When each of these interval families (i.e., the S1S2 fam-
ily of intervals, the S2S3 family of intervals, etc.) was plot-
ted as a histogram (Fig. 1), the presence of one or more
“bumps” in the distribution of intervals was immediately
apparent. Specifically, for both the S2S3 and S3S4 inter-
vals (Figs. 1(c) and (d) respectively), there appear to be
two populations: very short intervals on the order of 350
ms, and very long intervals, around 1000 ms, with very lit-
tle in between. The other interval distributions measured
(Figs. 1(a), (b) and (e)) did not exhibit the double-bump
feature.

To demonstrate this statistically, we first used the
expectation-maximization (EM) statistical algorithm to
compute both the single-gaussian and two-gaussian distri-

butions that best fit our last-S1S1, S1S2, S2S3, S3S4 and
S4S5 intervals from the 34 ECGs. Specifically, the EM
method was allowed to converge on optimized values for
µj , σh and aj in distributions of the form

f(x) =

N∑
j=1

aj√
2πσj

exp

(
− (x− µj)

2

2σ2
j

)
, (1)

where µj , σj and aj are the mean, standard deviation and
relative area of the jth normal distribution, and the aj’s
are constrained to sum to 1 for both N = 1 and N = 2.
The single-gaussian and two-gaussian distributions we ob-
tained appear as the blue curves in the top and bottom
rows, respectively, of Fig. 1. Histograms of the experi-
mental data are duplicated in the plots in the bottom row
to facilitate comparison.

We note that it is always possible to improve the fit by
increasing the number of normal distributions N in the
sum. Yet, if N is too large, the added bumps just corre-
spond to noise and not any physical property. Thus, to de-
termine the optimal value of N , we instead we proceeded
as follows: We first defined the quantity,

RD =
2

n

n∑
i=1

|FD(xi)− F (xi)| (2)
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Table 1. Mean, standard deviation, and relative areas of the gaussian distribution(s) that make up the distributions deemed
to fit the ICD beat intervals, as determined from the p-values obtained for best-fit one- and two-gaussian distributions.
These parameters we calculated using the EM algorithm.

Mean(ms) Std. Dev.(ms) Rel. Area Mean(ms) Std. Dev.(ms) Rel. Area
Last-S1S1 intervals 753 211 1.00

S1S2 intervals 457 122 1.00
S2S3 intervals 340 75 0.75 1028 235 0.25
S3S4 intervals 352 119 0.88 1098 145 0.12
S4S5intervals 316 84 1.00

where

F (x) =

∫ x

−∞
f(x′)dx′ (3)

is the cumulative distribution function of the distribution
f(x) we are testing, and

FD(xi) = (i− 0.5)/n, i = 1, . . . , n (4)

is an effective cumulative distribution for our ICD dataset
of intervals xi: D = {xi|i = 1, . . . , n}, with n in this case
being 34. Defined in this way, RD is smaller when the fit
of f(x) to the experimental data is better. To assess how
good a given value for RD is, we calculated the equiva-
lent quantity, RTj , for 1000 datasets Tj , j = 1, . . . , 1000,
each created using the probability distribution f(x). We
then calculated the quantity p, defined as the percentage of
the 1000 datasets we created that are fitted by f(x) more
poorly than our experimental dataset, using the inequal-
ity RTj

> RD as our criterion. We then say that f(x)
is not a good fit to the experimental data if p < 0.05.
The motivation for this criterion is that, if more than 95%
of the datasets we created using, say, the single-gaussian
distribution are better fits for the distribution than our ex-
perimental dataset, then the chances are less than 5% that
our experimental dataset could have been created by this
single-gaussian distribution and still fit this badly. Thus,
the single-gaussian distribution can be rejected as an ex-
planation for the data we obtained, and we can move on to
the two-gaussian distribution, and so on.

3. Results

The p-values for each of the intervals families for both
the one- and two-gaussian distributions using this method
are shown in each of the panels of Fig. 1, while Table 1
shows the optimal distribution parameters obtained from
the EM method. Examination of the p-values shows that
the single-gaussian distributions calculated for the last-
S1S1, S1S2 and S4S5 intervals are reasonable fits for the
ICD data for those beat intervals, since p > 0.05 for those
distributions (Figs. 1(a), (b) and (e)). However, the S2S3
and S3S4 intervals are not a good match for their computed
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Figure 2. Beat intervals for the 34 ECG records with (a)
the 8 records with S2S3 intervals > 650 ms, and (b) the 4
records with S3S4 intervals > 650 ms marked in red.

best-fit, single-gaussian distributions (p < 0.05, Figs. 1(c)
and (d)). For those two beat intervals, we see that two-
gaussian distributions are a good fit (p > 0.05, Figs. 1(h)
and (i)), confirming what we found upon casual observa-
tion. The means of the two gaussian peaks calculated from
EM algorithm, are around 350 and 1000 ms, as expected,
as shown in Table 1.

Examination of the eight ECG records whose S2S3 in-
terval is in the population centered around 1028 ms shows
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that for all but one of them, all the other intervals following
the last S1S1 interval are short, as illustrated in Fig. 2(a).
Thus, starting with the S1S2 interval, the pattern observed
is SLSS..., where S refers to “short” intervals roughly in
the 300–600 ms range, while L indicates intervals >700
ms. Similarly, all but one of the four ECG records whose
S3S4 interval is in the “long-interval” population has the
interval pattern SSLSS. This one exceptional pattern is the
same in both cases and has pattern SLLS.

4. Discussion

These patterns are in general agreement with our previ-
ous in vivo canine experiments, in which various patterns
of premature stimuli were introduced [3, 5]. In these ex-
periments, both SLSS and, less commonly, SLLS patterns
of premature stimuli led to the onset of VF. Patterns that
started with SS also often to lead to VF, although the ef-
fects of subsequent premature stimuli (e.g., SSLSS) were
not specifically studied. One significant difference is that
the long interval in the canine experiments was only 40–60
ms longer than the short intervals, whereas in our human
data they were 700 ms longer.

Our results of our study also largely agree with other,
earlier studies. In the Locati study [6], the presence of a
short-long-short (SLS) pattern preceding the onset of tor-
sade de points was verified through use of the t-test on
consecutive intervals. We also find that most of the pat-
terns of premature beats that end in VF start off as a se-
ries of short premature beats, which may either precede or
be part of the beginning of the tachyarrhythmia. Another
study that finds the SLS pattern preceding tachyarrhythmia
is Anthony et al [7]. They find that this pattern is less com-
mon than arrhythmias that start with a single premature
beat. This is also consistent with our findings—there are
many more traces that show up as gray in both panels of
Fig. 2 (22 of 34—65%. not counting one rogue gray trace
having a long S5S6 interval) which correspond to series of
only short intervals preceding tachyarrhythmia onset.

We have yet to make a direct comparison of our results
from this human ECG study with our coupled maps model.
Previously, however, we have found that monotonically in-
creasing electrical restitution functions, as suggested by
the dependency of the QTc diagnostic on the RR interval,
tend to point to SLSS as well as series of short intervals
as the patterns of intervals that are most likely to lead to
action potential block. This tendency holds even when the
slope of the restitution function is positive but much less
than one. The set of beat intervals resulting in block is con-
siderably smaller in this case, but still quite significant as
a group. Modifications of this tendency due to short-term

cardiac memory or hysteresis have also yet to be consid-
ered, but are currently under investigation.
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