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Abstract

Fixed structure Mathematical Morphology (MM) op-
erators have been used to detect QRS complexes in the
ECG. These schemes are limited by the arbitrary setting of
threshold values. Our study aims at extracting QRS com-
plex fiducial points using MM with an adaptive structuring
element, on a beat-to-beat basis. The structuring element
is updated based on the characteristics of the previously
detected QRS complexes. The MIT-BIH arrhythmia and
Physionet QT databases were respectively used for assess-
ing the performance of R-waves and other fiducial points
detection. Results show comparable or better performance
than the state-of-the-art and an efficient extraction of Q-
and S-waves as well as onset and offset points of the QRS
complex.

1. Introduction

The electrocardiogram (ECG) is comprised of different
electrical waveforms each representing either depolariza-
tion or repolarization of different muscles in the heart.
Among these waveforms, the QRS complex is the most
prominent representing the ventricular contraction. The
shape of this complex as well as the time of its appearance
provides significant information in cardiac disease diagno-
sis such as arrhythmia analysis [1]. Due to its peakiness
and the fact that other wave forms can be small, or in some
cases not even present in the ECG, the QRS complex plays
a fundamental role in automatic detection of heartbeats.

Generally, approaches consider two phases in QRS com-
plex detection. In most cases, the ECG is first preprocessed
by either a low-pass filter or a band-pass filter to suppress
perturbations. Subsequently in the detection phase, a fea-
ture signal is extracted from the filter output and compared
with some heuristically chosen thresholds to determine
whether a QRS complex is taking place at a certain point in
the ECG. Among these approaches, Pan and Tompkins [2]
proposed a derivative based approach to use the steep slope
characteristic of the QRS complex in the detection phase.
They used simple difference equations along side a band
pass filter to point out QRS complexes. Li et al. [3] ap-
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plied a wavelet transform approach to the ECG and found
that R-peaks can be picked out from perturbations such as
baseline drift and other waveforms in the ECG if relevant
scales in the WT is studied. Trahanias [4] used mathe-
matical morphology (MM) operators on the ECG both in
the noise removal and detection phases, each phase using
a different yet fixed structuring element, and compared the
feature signal with a threshold to detect QRS complexes.

To the best of our knowledge, all QRS detection ap-
proaches use some thresholds to detect these complexes
in the ECG. These thresholds comprise physiological con-
straints, e.g. the time difference between two beats can-
not be smaller than 250 and larger than 1800 milliseconds,
and arbitrary thresholds, e.g. comparing the feature sig-
nal to a specific value to detect heartbeats, to lower false
detection rate. The former thresholds are valid and can
be useful in detection but the latter are based on the data
at hand, can be hard to adapt when dealing with several
subjects or may need adjustment in different acquisition
scenarios. For instance, arbitrary thresholds can drasti-
cally reduce the detection rate when wearable device is
used, instead of standard clinical acquisition system. Huge
baseline drift and other noises due to movement of elec-
trodes can then be sometimes observed. Moreover, pro-
posed methods mostly focus on detecting the R-waves and
not the other fiducial points in the QRS complex such as
QRS-onset, QRS-offset, Q-point and S-point. Arrhythmia
analysis is possible through studying RR intervals [5, 6]
or by using power-frequency analysis of the ECG [7] or a
combination of both [6]. Nevertheless, once accurate lo-
cations of QRS fiducial points are available for a series of
consecutive beats, a simple post processing enables us to
detect and classify different types of arrhythmia well as
beat types [6, 8].

In this paper, we propose a mathematical morphology
approach with an adaptive structuring element not only
to overcome the issue of arbitrary thresholds, but also to
extract other fiducial points in the QRS complex together
with the R-waves. The proposed method is robust against
baseline drift and other perturbations with low computa-
tional costs and good performance.
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2. Mathematical Morphology (MM)

Mathematical morphology is a methodology proposed
to extract useful topological information based on the anal-
ysis of geometrical structures. MM was first introduced for
binary images with strong set-theoric concepts and non-
linear operators, designed to extract useful information in
images regarding shape and size [9]. MM is based on two
elementary operators named dilation and erosion. Com-
bining dilation and erosion leads to additional operators
such as opening, closing, top-hat and bottom-hat as listed
in the following equations:

Dilation® : f®g(n) = max {f( Y+g(x—14)} (1)

(1<i<n
Erosion©: f©g(n) = 0 min ){f(i) gz —i)} (2)
Openo: fog(n)=(f®g)Sgn) 3)
Closce: fog(n)=(fog) ®gn) (C)]
Top— Hat: THat(g(n)) = f(n) — fog(n) (5

Bottom — Hat : BHat(f(n)) = f(n) — feg(n) (6)

Where g(n) represents the structuring element of length
n, ¢ indicating the ith element of the structuring element
and f the signal to which the MM operator is applied.
These operators are quick, simply defined and use a struc-
turing element to extract useful information and suppress
artifacts. Depending on the effect sought when using these
operators, a specific structuring element must be used.
Shape and length of the structuring element should be care-
fully chosen as they play an important role in the outcome
of these operators [4,9, 10]. For example, the average of
an opening and closing of a signal with a flat structuring
element can be used for noise suppression while the same
average with a peaky structuring element tends to enhance
peaks and valleys in the signal.

3. Proposed method

As mentioned in the introduction, before the detection of
QRS complex in the ECG is carried out, the signal must be
conditioned by removing different potential perturbations.
Signal acquisition noise, high frequency muscle activity
and low frequency baseline drift are among the most dom-
inant perturbations. In order to condition the ECG for QRS
detection, we use a low-pass filter with a cutoff frequency
at 50 Hz mainly to remove the acquisition noise introduced
by the electrocardiograph. Since frequency components
of the QRS complex are typically in the range of about
10 Hz to 25 Hz, ECG waveforms are preserved. Then, a
QRS complex-like structuring element is synthesized with
a duration of 90 milliseconds, which represents an average
normal QRS duration, Fig. 1-a. Using this synthesized
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structuring element, top-hat and bottom-hat operators are
applied to a small time window of the ECG, a 2-seconds
window based on the upper limit of RR-interval, giving
rise to peaks and valleys. The average of the top-hat and
bottom-hat operators results in a feature signal with non-
zero values at peaks and valleys, mostly corresponding to
QRS complexes, with peaks at R-waves and valleys before
and after, Q- and S- points. QRS-onset and QRS-Offset are
considered respectively as the start and end of non-zero ac-
tivity in the feature signal. Purterbations might cause non-
zero feature signal values at positions where QRS com-
plexes do not occur. Therefore, the following physiologi-
cal thresholds where used to prevent false QRS detection:

Reandidate — Rp'revious >= 250ms
Rcandidate - Rprevious <= 1800ms
QRSwiqth >= 17ms

QRSvalid = { 7N

Where R qndidate represents the time index of the R-
wave of the QRS candidate in the feature signal, Ry, cvious
the time index of the R-wave of the previous QRS complex
and QRSwiath, the duration of the QRS candidate. The
RR-interval between the candidate QRS and the previous
QRS cannot be smaller that 250 milliseconds (or larger that
1800 ms) since it is humanly impossible [1]. Furthermore,
the threshold on the length of the QRS is set based on the
minimum QRS duration observed in patients with extreme
heart conditions [11].

Once a QRS complex is detected, its topological fea-
tures such as shape, size and amplitude are used to update
the structuring element to enhance QRS detection. More
specifically, for each fiducial point, the location and the
amplitude is extracted from the feature signal and is used
to update the corresponding fiducial point in the structur-
ing element, as shown in the following equations:

NewLoc = (1 — o) x Curr_Loc + o x ExtractedLoc (8)
NewAmp = (1 — a) X Curr_Amp + a X ExtractedAmp (9)

In these equations, o represents the learning coefficient
and for each fiducial point, Curr_Loc and ExtractedLoc
are calculated as the distance with regards to the QRS on-
set, respectively extracted from the structuring element and
the feature signal. Furthermore, for each fiducial point,
Curr_amp and Extracted Amp represent its amplitude
in the structuring element and the feature signal. Using
New_Loc and NewAmp, the structuring element is up-
dated and the same procedure is applied to the next ECG
window. In other words, after the detection of each QRS
complex the structuring element is adapted to enhance the
detection.

Furthermore, another feature named Peak Activity (PA),
measured as the sum of absolute values for every QRS
complex is extracted from the feature signal. This feature
helps setting the learning coefficient. « is set to 0.9 at the
start of the algorithm. After detection of the second QRS
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Figure 1. (a)Synthesized QRS structuring element. The vertical lines before the Q-wave and after the S-wave respectively
represent the onset and offset of the structuring element. (b) AM M’s result on a tape from MIT/BIH arrhythmia database

alongside the extracted feature signal (in red).

complex, the PA of the newly detected QRS is compared
to that of the previous detected QRS and alpha is updated
using:

a+0.05 NewPA < PreviousPA x 0.9
a—0.056 NewPA > PreviousPA x 1.1
0.3

10)

o =

otherwise

Results show not only that this adaptation improves
heartbeat detection but also provides accurate locations for
Q, S, onset and offset points. Fig. 1-b shows AMM de-
tection performance on a part of tape number 121 of the
MIT/BIH arrhythmia database.

4. Results and discussion

In order to evaluate the performance of the proposed
method, MIT/BIH arrhythmia and QT databases were used
for detection of QRS and other fiducial points. The first
database consists of 48 half hour ECGs with 360 Hz sam-
pling frequency and 11-bit resolution on a range of 10-
mv. Among these records, some suffer from artifacts, base-
line drift and abnormal shapes (such as record 108), which
makes QRS detection a hard task. The second database,
designed for waveform boundary evaluation, consists of
105 15-minutes two-channel ECGs with a variety of QRS
morphologies. In this database, at least 30 beats in each
record were manually annotated for a total of 3622 beats.
For a precise evaluation, only manually annotated beats
were considered for Q-point, S-point, onset, and offset de-
tection evaluation. Tables 1 shows AMM’s evaluation re-
sults for the MIT/BIH database.

Table 2 compares the performance of AMM with that
of well-known QRS detection methods. As shown in this
table, AMM provides comparable or better results while
its beat-to-beat adaptation and low complexity makes it a
suitable choice for body area networks, in which power
consumption play a vital role.

AMM complexity consists of two elements namely, MM
operation complexity and structuring element update. The
total complexity can be expressed as O(I x n) + O(l x r)
where n represents the number of ECG samples, [ the
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Table 1. Performance of AMM on QRS complex detection
on MIT/BIH arrhythmia database.
[ Tape No. | No. of Beats | FP | FN [ Failed Detection % | Sensitivity |

100 2273 0 0 0 1
101 1865 1 0 0.0536 1
102 2187 0 0 0 1
103 2084 0 0 0 1
104 2229 7 1 0.3589 0.9991
105 2572 22 | 15 1.4386 0.9884
106 2027 0 4 0.1973 0.9961
107 2137 0 1 0.0468 0.9991
108 1763 3 17 1.1344 0.9809
109 2532 0 1 0.0395 0.9992
111 2124 2 1 0.1412 0.9991
112 2539 0 0 0 1
113 1795 0 0 0 1
114 1879 4 2 0.3193 0.9979
115 1953 0 0 0 1
116 2412 0 20 1 0.9836
117 1535 0 0 0 1
118 2278 2 0 0.0878 1
119 1987 0 0 0 1
121 1863 0 2 0.1074 0.9979
122 2476 0 0 0 1
123 1518 0 0 0 1
124 1619 0 0 0 1
200 2601 4 1 0.1922 0.9992
201 1963 0 12 1 0.9878
202 2136 0 2 0.0936 0.9981
203 2980 18 12 1.0067 0.992
205 2656 1 2 0.113 0.9985
207 1860 3 3 0.3226 0.9968
208 2955 2 9 0.3723 0.9939
209 3005 4 0 0.1331 1
210 2650 3 4 0.2642 0.997
212 2748 0 0 0 1
213 3251 0 3 0.0923 0.9982
214 2262 0 0 0 1
215 3363 0 0 0 1
217 2208 6 4 0.4529 0.9964
219 2154 0 0 0 1
220 2048 0 0 0 1
221 2427 0 6 0.2472 0.9951
222 2483 4 4 0.3222 0.9968
223 2605 2 0 0.0768 1
228 2053 11 8 0.9255 0.9922
230 2256 0 0 0 1
231 1571 0 2 0.1273 0.9975
232 1780 4 0 0.2247 1
233 3079 5 1 0.1949 0.9994
234 2753 0 0 0 1
TOTAL 109494 108 | 137 0.2238 0.9975




Table 2. Comparison of performance with previously pro-
posed methods on MIT/BIH arrhythmia database.
‘ Fiducial point ‘ No. of Beats ‘ FP ‘ FN ‘ Failed detection % ‘ Ref. No. ‘

AMM 109494 108 | 137 0.224 —
Pan-Tompkins 109809 507 | 277 0.710 [2]
Wavelet 104184 65 | 112 0.170 [3]
3-MM 109510 204 | 213 0.3801 [10]

Table 3. Evaluation of the proposed method on the manu-
ally annotated beats for QRS fiducial points, QT database.

[ Fiducial point | Sensitivity | Detection Rate | Error Tolerance (ms) |

R-wave 0.9987 0.9990 0
QRS-Onset 0.9684 0.9791 10
Q-point 0.9903 0.9902 4
S-point 0.9966 0.9966 4
QRS-Offset 0.9820 0.9818 10

length of the structuring element and r the number of de-
tected heartbeats. Since [ < n and k < n the second
term can be omitted and AMM order of complexity can be
written as O(n).

The structuring element as the heart of AMM is care-
fully adapted after detection of each beat. This adaptation
changes the location of fiducial points and their amplitudes
resulting in a more precise detection. The more the struc-
turing element resembles the QRS complex in the ECG,
the more accurate the feature signal. Employing a gen-
eral structuring element to detect all QRS complexes can
result in unwanted activity in the feature signal, forcing
a threshold which best separates actual QRS complexes
from false positives. Moreover, the length and scale of
the structuring element has drastic effects on the feature
signal. Broadening the structuring element will give rise
to peaks and valleys, which affects the localization of fidu-
cial points. On the other hand, scaling up the amplitude
of the signal weakens high frequency activities but also
shrinks the peaks and valleys in the feature signal. Nar-
rowing the structuring element or scaling down its ampli-
tude has relatively opposite effects. Therefore, a compro-
mise should be made in order to have a feature signal best
representing the QRS complexes in the ECG. Our studies
show that the best length and amplitude for the structuring
element are actually the length and amplitude of the QRS
complex. However, the amplitude should become larger as
more noise sources are present. Therefore, we studied the
effect of learning coefficient in order to best apply these
changes with regards to the activities in the ECG and the
previously detected QRS complexes. At the beginning, the
learning coefficient is set to 0.9 due to the fact that the
structuring element is synthesized and drastic changes in
the structuring element might be needed. As more QRS
complexes are detected, the topology of the structuring el-
ement becomes closer to the QRS topology of the subject
and results in better detection of the QRS complexes as
well as of the other fiducial points. Table 3 shows per-
formance of AMM on the manually annotated sections of
ECG in the QT database.
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5. Conclusion and Future Work

In this paper we present a mathematical morphology ap-
proach with an adaptive structuring element to detect QRS
fiducial points. Unlike most QRS complex detectors, in
which a set of arbitrary and physiological thresholds are
common, only physiological thresholds are used in AMM.
The adaptive structuring element is updated after detec-
tion of each heartbeat to resemble patient QRS complex
topology for better and more accurate heartbeat detection.
Beat-to-beat QRS detection and low computational cost of
AMM makes it a suitable choice for body area networks.

Furthermore, detected fiducial points together with the
extracted RR-intervals can be used in future studies of beat
classification and arrhythmia detection.
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