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Abstract

Pharmacological therapy of atrial fibrillation (AF) is
still a major clinical challenge. Particularly AF of early
onset has a significant familiar component and was asso-
ciated with various gene mutations. In this study, we de-
signed and optimized antiarrhythmic agents for atrial sub-
strates affected by human ether-à-go-go-related gene mu-
tations L532P and N588K. A virtual multichannel blocker
was designed aiming at a restoration of the wild-type (WT)
action potential (AP) on the single cell and tissue level.
Furthermore, the amiodarone and dronedarone concen-
trations yielding the smallest difference between WT and
mutated APs were identified. The WT AP at a basic cy-
cle length (BCL) of 1000 ms could be restored by signifi-
cant block of IKr and IKur (≥39%) and less pronounced
block of IKs, ICa,L, Ib,Na, and Ib,Ca (≤17%) for both
mutations. Effective dronedarone concentrations of 88 nM
for L532P and 40 nM for N588K yielded matches almost
as good while amiodarone could not sufficiently restore
the WT AP. APD90 restitution was effectively restored by
the tuned N588K agent whereas differences of up to 34 ms
were observed for low BCLs using the tuned L532P agent.
Our results provide insight into the pharmacodynamic re-
sponse of mutated myocytes and may aid in the optimiza-
tion of patient group-specific therapeutic approaches.

1. Introduction

Atrial fibrillation (AF) is the most common sustained
arrhythmia in humans and associated with severe compli-
cations such as stroke [1]. In the past years, various gene
mutations have been linked to AF (“familial AF”) [2]. Peo-
ple carrying these mutations are more susceptible to AF
than others. Despite a multitude of available antiarrhyth-
mic agents, pharmacological AF therapy is still a major
clinical challenge. Amiodarone is a well-known class III
drug with proven clinical efficacy [1]. Dronedarone is a
derivative and was designed to reduce adverse effects.

In this work, we aim to revert the action potential (AP)
of myocytes affected by human ether-à-go-go-related gene
(hERG) mutations N588K and L532P to that of non-
mutated, wild-type (WT) myocytes. Towards this end, a
virtual multichannel blocker minimizing the difference of
the AP courses was designed for each mutation. The resti-
tution of the action potential duration at 90% repolariza-
tion (APD90) was assessed for the myocytes under the in-
fluence of the newly designed antiarrhythmic agents. Fur-
thermore, the amiodarone and dronedarone concentrations
yielding the smallest difference were determined.

2. Methods

The Courtemanche-Ramirez-Nattel (CRN) model of hu-
man atrial electrophysiology [3] was used as a reference
for WT myocytes. The IKr formulation was adapted to
model the two hERG mutations N588K and L532P as de-
scribed before [4]. In brief, half activation and inactivation
voltages and the slope of the corresponding Boltzmann
functions, as well as the time constant of the gate were ad-
justed according to data measured by McPate et al. [5] to
represent the N588K mutation. To model the L532P muta-
tion, a hybrid optimization approach [6] was used to tune
10 parameters of the CRN IKr formulation to match mea-
sured data [7]. To approximate heterozygous expression, a
1:1 mutant to WT ratio was assumed.
For the design of a virtual drug, the maximum conduc-
tances gx of the ionic currents IKr, IKur, IKs, Ito, IK1,
INa, ICa,L, Ib,Na, and Ib,Ca channels were inhibited indi-
vidually by a factor kx:

Ix = gx · kx · (Vm − Ex) , kx ∈ [0, 1] (1)

with Vm being the transmembrane voltage and Ex be-
ing the equilibrium potential of the respective ion type.
The effect of the pharmacological agents amiodarone and
dronedarone was modeled by reducing the maximum con-
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ductance of the ion currents according to the Hill equation:

Θ =
1

1 +
(
IC50

D

)nH (2)

with Θ being the degree of channel blockage ranging from
0 to 1, IC50 being the half maximal inhibitory concentra-
tion, D being the free drug concentration, and nH being
the Hill coefficient. The respective IC50 and nH values
were extracted from the literature (see Table 1). The ob-
jective function for the minimization was defined as the
root mean square error (RMSE) between the mutant and
the WT AP over a time span of 500 ms:

∆AP :=

√√√√ 1

500

500∑
i=1

(Vm,mut(xi)− Vm,WT (xi))
2 (3)

The Vm course of the mutant cell was altered by the vec-
tor ~k ∈ R9 according to (1) in order to minimize ∆AP
or by the scalar concentration D of either amiodarone or
dronedarone according to (2) for the dose optimization
of these drugs. To compensate for transient oscillations
caused by conductance changes, the last AP in a train of 6
was analyzed. APs were elicited by stimuli at a basic cycle
length (BCL) of 1000 ms.
Cell models were implemented in MATLAB (R2013b, The
MathWorks, Nattick, MA, USA) and solved with a vari-
able time step by ode15s for simulations on the single cell
level. Tissue simulations were conducted in a 1D strand
of size 7× 0.1× 0.1 mm3 using the monodomain solver
acCELLerate [18] and a time step of 10µs. The finite dif-
ference grid had an isotropic voxel side length of 0.1 mm.
For the optimization on the single cell level, the trust
region reflective algorithm as provided by lsqnonlin in
MATLAB was utilized using uniformly distributed ran-
dom start vectors. On the tissue level, the constrained
Broyden-Fletcher-Goldfarb-Shanno algorithm provided by
SciPy [19] was used with the optimized parameters from

Table 1. Pharmacological inhibition of cardiac ion chan-
nels by amiodarone and dronedarone.

Amiodarone Dronedarone
IC50 nH Ref. IC50 nH Ref.
(µM) (µM)

IKr 2.80 0.91 [8] 0.0591 0.80 [9]
IKur - - 1.00 1.00 [10]
IKs 3.84 0.63 [11] 5.60 0.51 [12]
INa 4.84 0.76 [13] 0.54 2.03 [13]
ICa,L 5.80 1.00 [14] 0.83 2.75 [15]
INaCa 3.30 1.00 [16] - -
INaK 15.60 1.00 [17] - -
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Figure 1. Restitution of the APD90 for WT and mutant
atrial myocytes. The optimized multichannel blockers (see
Table 2) were applied to the hERG mutant cells.

the single cell level as initial guess. Furthermore, APD90

was analyzed in tissue for 30 BCLs distributed linearly in
the frequency domain ranging from 200 ms to 1300 ms. In
this way, the restitution with respect to the diastolic inter-
val (DI) defined as the difference between BCL and APD90

was obtained as described before [4].

3. Results

In a first step, a virtual multichannel blocker was de-
signed to minimize the RMSE between the WT and the
mutated APs. In the single cell environment, the RMSE
could be reduced from 18.15 mV to 0.51 mV for L532P
and from 8.34 mV to 0.51 mV for N588K, respectively (see
Fig. 2A). The maximum deviation per time step was re-
duced from 36.18 mV to 3.14 mV and from 17.08 mV to
2.48 mV accordingly. The inhibition factors yielding the
lowest RMSE are shown in Table 2. As can be seen in
Fig. 2B, the match for L532P using the inhibition vector ~k

Table 2. Inhibition factors for atrial ion currents ranging
from 1 (no effect) to 0 (complete blockage). The given
combinations yielded the lowest RMSE between mutated
and WT APs in single cell and tissue simulations.

L532P N588K
Cell Tissue Cell Tissue

kKr 0.42 0.39 0.56 0.56
kKur 0.59 0.59 0.61 0.61
kKs 0.95 0.95 0.88 0.88
kto 1.00 1.00 0.99 0.99
kK1 1.00 1.00 1.00 1.00
kNa 1.00 1.00 0.99 0.99
kCa,L 0.86 0.86 0.83 0.83
kb,Na 0.97 0.98 0.96 0.96
kb,Ca 0.92 0.92 0.96 0.96
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Figure 2. AP curves from single cell (A) and tissue (B) simulations obtained using WT and hERG mutation cell models.
Multichannel blockers as defined in Table 2 were applied to mutant myocytes to restore the WT AP. In (A), the curve of
the L532P cell under the influence of the tuned drug is covered by that of N588K under drug influence. In (B), the N588K
curve under the influence of the drug tuned in tissue is partially covered by that tuned in the single cell environment.
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Figure 3. The concentration of amiodarone and dronedarone was optimized to restore the AP of cells affected by hERG
mutations L532P (A) and N588K (B) to the WT AP. 2 amiodarone concentrations yielded the same RMSE for L532P.

obtained on the single cell level was not as good in tissue
simulations (RMSE 1.76 mV). However, the RMSE could
be reduced to 0.63 mV by subsequent optimization in tis-
sue yielding an additional 3% blockage of IKr and a re-
duction of Ib,Na blockage by 1% compared to the single
cell optimum. For N588K, the RMSE of 0.63 mV could
not be improved further.
For higher stimulation frequencies, the APD90 of the mu-
tated cells under the influence of the optimized multichan-
nel blocker was reduced compared to WT myocytes (see
Fig. 1). For N588K, the maximum shortening was 6.2 ms
at a DI of 178 ms. For L532P, the maximum deviation
compared to WT was 34.2 ms at a DI of 62 ms.
In a second step, the concentration of amiodarone and
dronedarone was optimized on the cellular level using
the same objective function as above. The resulting AP
curves are shown in Fig. 3. For L532P, amiodarone con-
centrations of 0.658µM and 10.72µM yielded the low-

est RMSE of 17.21 mV. The optimal dronedarone concen-
tration of 0.088µM yielded 1.76 mV, respectively. For
N588K, RMSEs were 6.33 mV and 1.33 mV for concen-
trations of 0.760µM and 0.040µM, respectively.

4. Discussion

We aimed to restore WT electrophysiology in atrial my-
ocytes affected by hERG mutations L532P and N588K.
Towards this end, we minimized the deviation between
WT and mutant APs by tuning the inhibition of ionic cur-
rents. In a single cell environment, the WT AP could be
restored by significant block of IKr and IKur (≥39%)
and less pronounced block of IKs, ICa,L, Ib,Na, and Ib,Ca

(≤17%). For L532P, IKr inhibition had to be slightly re-
duced to obtain optimal results on the tissue level. APD90

restitution was almost restored by the virtual N588K drug.
For L532P, shortening of up to 15% could not be prevented
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for low BCLs. Our results show that combined reduction
of ionic current conductances can counterbalance changes
in IKr kinetics due to e.g. genetic mutations.
Concerning the existing pharmacological agents amio-
darone and dronedarone, markedly different potency with
respect to the restoration of the WT AP was observed.
While dronedarone achieved results close to the hypothetic
virtual multichannel blocker, the RMSE could not be sig-
nificantly reduced using amiodarone. These results under-
line the importance of the complex, non-linear interaction
of different ionic currents and advise against solely con-
sidering the main effect (i.e. potassium channel blockage)
when characterizing mode of action.
It has to be emphasized that the model of amiodarone rep-
resents its acute effects which differ from those seen under
chronic administration [20]. Moreover, the pharmacolog-
ical agents investigated in this work build purely on max-
imum conductance inhibition and do not consider voltage
or state-dependent block providing potential for future op-
timization of restitution properties.
Zemzemi et al. investigated IKr, INa, and ICa,L block-
age in ventricular myocytes all the way from ion channel
to body surface potentials [21]. However, our study is —
to the best of our knowledge — the first to optimize hypo-
thetic and existing drugs for familial AF comprehensively.
Our results provide insight into the pharmacodynamic re-
sponse of mutated myocytes rendering patients vulnerable
to AF and may aid in the design and optimization of patient
group-specific therapeutic and preventive approaches.
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