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Abstract 

Atrial fibrillation (AF) consists of uncoordinated atrial 
and ventricular electrical activity. Quantifying the 
nonlinear dynamics of AF is difficult since the QRS wave 
masks the P wave patterns on the electrocardiogram 
(ECG). The purpose of this project was to minimize the 
size of the QRS wave and analyze the remaining atrial 
ECG signal to better measure the nonlinear dynamics 
underlying AF. A continuous single-lead ECG signal was 
digitally recorded during atrial myocardial tissue 
ablation in 19 adult AF patients. Thirty-second segments 
of AF were selected before and after ablation from each 
ECG recording. The ECG segments were processed with 
the adaptive singular value cancelation (ASVC) technique 
to reduce the size of the QRS wave. The remaining atrial 
signal was then analyzed with recurrence quantification 
analysis (RQA) to quantify its nonlinear dynamics. The 
RQA variable, %determinism, significantly decreased 
after ablation (p = .042). This finding suggests that the 
processed AF signal contained less structure in the 
nonlinear domain after ablation of the atrial myocardial 
tissue. These results demonstrated that the ASVC 
technique reduced the size of the QRS wave allowing 
RQA to detect alterations in the nonlinear dynamics of 
the remaining atrial ECG signal after ablation. 

1. Introduction

Atrial fibrillation (AF) is characterized by 
uncoordinated P and QRS waves on the 
electrocardiogram (ECG). These ECG waves represent 
asymmetrical atrial and ventricular electrical activity, 
respectively, which ultimately produces irregular 
myocardial contractions. Consequently, AF carries a 5-
fold increase of stroke due to thrombosis [1]. Despite new 
advances in treatment, the AF arrhythmia remains 
difficult to fully understand since the QRS wave masks 
the atrial patterns on the ECG.  

Although totally eliminating the QRS wave is not 
possible, several methods exist for minimizing its size in 
the digitized ECG [2,3]. One such method is adaptive 
singular value cancellation (ASVC), which decreases the 
amount of QRS residua during processing of single-lead 

ECG data sets. Alcaraz & Rieta [4] demonstrated that 
ASVC leaves very little QRS residua and noise compared 
to other techniques such as average beat subtraction. 
ASVC uses the shared QRS morphology within a given 
data set to create a template of the base signal 
corresponding to ventricular activity [7]. This template is 
then used to modify and reduce the R wave amplitude 
within each QRS complex. Furthermore, ASVC can be 
implemented without the need for complex multi-lead 
ECG signals, which are necessary for techniques that 
exploit the spatial diversity of the cardiac electrical 
system [6].  

Analyzing the remaining atrial signal with a nonlinear 
technique detects and quantifies atrial behavior patterns 
unseen with linear analyses. Previous studies suggest that 
AF may contain deterministic, rather than random, 
behavior patterns [7]. Recurrence quantification analysis 
(RQA) is a nonlinear signal analysis technique that 
detects and quantifies the nonlinear dynamics contained 
in sinus rhythm as well as the atrial and ventricular 
arrhythmias [8-10].  

The purpose of this project was to reduce the QRS 
wave in the ECG using ASVC and analyze the remaining 
atrial signal with RQA to better quantify the underlying 
nonlinear dynamics of AF. 

2. Methods

The ECG data analyzed for this project were obtained 
as part of a larger study approved by the Institutional 
Review Board at Georgia Regents University. Each 
patient signed the approved consent form prior to the 
ablation procedure and data collection. A continuous 
single-lead surface ECG signal (Lead II) was digitally 
recorded during the left atrial myocardial tissue ablation 
and pulmonary vein isolation procedures for 48 adult AF 
patients. Of these, only 19 AF patients fit the inclusion 
criteria for this project: high quality ECG recordings, 
during AF without ventricular ectopy, before and after 
ablation. The ECG recordings were obtained using 
PowerLab© hardware and LabChart Pro© software both 
from ADInstruments, Colorado Springs, CO. Each ECG 
signal was digitized (sampled) at the 1K rate and 
processed offline after the completion of the ablation 
procedure. Thirty-second segments of AF rhythm were 
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extracted before and after ablation from each continuous 
ECG recording. Each 30-second ECG segment was 
processed with the ASVC technique. The resulting 30-
second atrial ECG signal was then analyzed with RQA. 
RQA uses eight variables to quantify the nonlinear 
dynamics contained in the ECG signal. Using SPSS© 
(IBM, Chicago, IL), paired t-tests determined if 
significant differences existed between the before/after 
ablation atrial ECG segments for each RQA variable at 
the .05 level of significance. 
 
2.1. Adaptive singular value cancellation 

Theoretically, ASVC is an appropriate tool for 
minimizing the QRS waves within an ECG segment 
because the atrial and ventricular waveforms are 
uncoupled from each other during AF [11]. Also, the high 
frequency of redundant QRS waveforms in the ECG 
signal over time allows ASVC to generate a tailored 
template pattern, which is then used to reduce the R wave 
amplitude within each QRS complex [4].  

For this project, all ECG segments were processed via 
ASVC using a custom MATLAB® (Mathworks, Natick, 
MA) program. First, the R waves were detected using the 
Pan and Tompkins algorithm [12]. This method took the 
derivative of the ECG signal and squared the output, 
emphasizing the QRS complex. Moving window 
integration was used to identify each R wave peak; each 
window approximated the widest possible QRS complex 
and labeled the fiducial mark at the maximum point of the 
R wave above a chosen threshold.  

After locating the R wave, the ASVC algorithm 
located and minimized the QRS complex. First, the QRS 
start and end points were identified to calculate the QRS 
width within an ECG segment. Each QRS complex was 
then inserted into a column vector matrix and singular 
value decomposition performed to determine the principal 
component of the matrix. A template was then created 
using the principle component. This template was adapted 
to each QRS complex so to account for the varying R 
wave amplitudes in the ECG caused by respiratory chest 
movement. The ratio of R wave amplitude in each QRS 
complex over the template’s R wave was then multiplied 
to the original template pattern before subtracting it from 
each QRS complex. 

 
2.2. Recurrence quantification analysis 

Several recurrence plot software packages now exist to 
analyze and quantify the nonlinear dynamics contained 
within a physiological signal [13]. Generally, a recurrence 
plot is the pictorial representation of a matrix whose 
elements reflect the recurring states of a system. 
Recurrence plots reveal a dynamical system’s phase space 
trajectory (i.e., the position and momentum behavior of 

an object within the system) such that patterns of 
repeating data sequences signify the degree to which each 
point is predetermined by the previous data point. 

Copyrighted by Dr. Charles L. Webber, Jr. and free for 
download at http://homepages.luc.edu/~cwebber/, the 
RQA software package used for this project was 
originally developed by Webber and Zbilut [14-15]. RQA 
mathematically reconstructs the atrial ECG data set into a 
time-ordered sequence of vectors (data sequences) 
denoted as the diagonal and vertical line structures in the 
recurrence plot. Data points are considered recurring if 
they appear within a preset radius. In this manner, the 
repeating data sequences signify the degree that a 
particular system is structured and organized in the 
nonlinear domain. RQA does not require a priori 
assumptions or special data conditioning, since recurrent 
points are tallied within the data set itself. Each RQA 
variables quantifies a unique nonlinear characteristic: 
 %recurrence quantifies the percentage of points falling 

inside a specified radius and reflects the amount of 
recurring data points in a system; 

 %determinism quantifies the proportion of points 
forming diagonal lines and reflects the amount of 
structure in the system; 

 Dmax is the longest diagonal line in the plot; inversely 
proportional to the largest positive Lyapunov 
exponent, it reflects the periodicity of a system;  

 entropy quantifies the probability distribution of the 
diagonal line lengths and reflects the complexity of a 
system; 

 trend quantifies the distance and density of the points 
in the plot’s parallel lines and reflects the stationarity 
of a system; 

 %laminar quantifies the proportion of points forming 
vertical lines and also reflects the system’s structure; 

 Vmax quantifies the longest vertical line of the plot 
and reflects the regularity of the system; 

 Traptime quantifies the average length of the vertical 
lines and reflects the data predictability in the system. 
A periodic system is highly structured, exhibiting 

stationary behavior in phase space via a signal containing 
abundant repetitive data values. Thus, the %recurrence, 
%determinism, Dmax and entropy values will be higher 
when the cardiac system is periodic (during asystole) than 
when it is less periodic (during AF). Trend values hover 
around zero with periodic systems, while %laminar, 
Vmax and traptime values rise with increase periodicity. 

RQA is composed of several modules with which to 
analyze any given signal. For this project, the Recurrence 
Quantification Epochs (RQE) module was used to 
analyze each 30-second atrial ECG segment on an epoch-
by-epoch basis. The RQE parameters were delay = 30, 
embed = 8, Euclidean normalization, first point = 1, last 
point = 2010, overlap = 2000, maximum number of 
epochs, no randomization, mean distance scaling, radius 
= 9 and line = 2. RQE produced 14 epochs for each ECG 

810



segment with these parameter settings; each epoch 
contained the values for each RQA variable. Using 
Excel® (Microsoft, Seattle, WA) for data management, the 
average RQA variable values for the 14 epochs were 
calculated then sorted into the appropriate before/after 
ablation group for statistical analysis. 

  
3. Results  

The 19 AF patients providing ECG data for this project 
were 53% female and 95% Caucasian with a mean age 67 
± 7 years. Their mean body mass index was 31 ± 5 and 
mean ejection fraction > 55%. Ten of these patients were 
diagnosed with paroxysmal AF and the other nine with 
persistent AF. 

Figure 1 illustrates the QRS wave reduction when the 
digitized ECG signal is processed with the ASVC 
technique. Figure 1A is a 10-second example of the 
original ECG signal and Figure 1B the subsequent post-
ASVC processed atrial signal output.  

 
 

A 

 

B 

 
 
Figure 1. Ten-second ECG signal examples showing QRS 
wave reduction with ASVC. (A) Original 30-second ECG 
signal. (B) Resulting atrial signal after ASVC processing.  

Table 1 shows the pre- and post-ablation mean ± 
standard deviation values for the RQA variables. The 
only RQA variable to show a statically significant group 
difference between before and after ablation was 
%determinism (p = .042).  
 
Table 1. Mean RQA Variable Values 
 

RQA Variable 
Pre- 

Ablation 
Post- 

Ablation 
p value 

% recurrence 0.56 ± 0.7 0.35 ± 0.2 .23 

%determinism 99.0 ± 0.6 98.75 ± 0.7 .042* 

maxline 1327 ± 509 1276 ± 446 .59 

entropy 4.36 ± 0.4 4.13 ± 0.2 .066 

Trend -0.79 ± 0.4 -0.64 ± 0.3 .225 

%laminar 95 ± 3.5 92 ± 6.6 .109 

Vmax 28 ± 45 17 ± 12 .322 

Traptime 5.56 ± 4.9 3.97 ± 1.3 .198 

 
*significant group difference p < 0.05 
 
 
4. Discussion 

The major finding of this project was that the nonlinear 
structure of AF diminished with ablation of the left atrial 
myocardial tissue during conventionally-performed 
pulmonary vein isolation procedures. Although only 
%determinism significantly decreased, all the other RQA 
variables also decreased after ablation – albeit trend 
slightly increased toward zero. These findings suggest 
that atrial tissue ablation and pulmonary vein isolation 
altered the nonlinear structure of the atrial surface ECG 
signal in phase space, possibly making the atrial signal 
less periodic during fibrillation. Tissue ablation for the 
treatment of AF has as its primary endpoint the electrical 
isolation of all pulmonary veins, thereby isolating any 
potential AF triggers from the remainder of the atrium. 
Additionally, ablation alters action potential wave 
propagation across the atrial myocardium during AF and 
sinus rhythm [16-17]. Together these changes may result 
in a less deterministic atrial ECG signal. Ultimately, the 
goal of ablation is to eliminate AF and ensure 
maintenance of sinus rhythm. The relationship between 
the nonlinear alterations of the atrial ECG signal and the 
facilitative effects of ablation upon cardioversion of AF 
to sinus rhythm needs to be further explored in future 
research projects.  

This project also demonstrated that ASVC successfully 
minimized the QRS wave prior to analysis with RQA. As 
a signal processing methodology, ASVC is a valuable 
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tool for AF research since it lessens the need to retrieve 
the atrial signal from invasive cardiac catheters. However, 
more research is needed with a larger sample size to 
determine the clinical benefit of quantifying the nonlinear 
dynamics within the AF arrhythmia after processing the 
surface ECG signal with the ASVC technique. 
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