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Abstract

The purpose of the present study is to determine the
feasibility of estimating respiratory information from the
built-in pressure sensors of a dialysis machine. The study
database consists of simultaneous recordings of pressure
signals and capnographic signals from 6 patients during
7 hemodialysis treatment sessions. Respiration rates were
estimated using respiratory induced variations in the beat-
to-beat interval series of the cardiac component of the
pressure signal and respiratory induced baseline varia-
tions in the pressure signal, respectively. The estimated
respiration rates were compared to a reference respira-
tion rate determined from the capnograhpic signal. The
root-mean-square error of the estimated respiration rate
from the baseline variations of the pressure signal was 2.10
breaths/min; the corresponding error of the estimated res-
piration rate from the beat-to-beat interval series of the
cardiac component was 4.95 breaths/min. The results sug-
gest that it is possible to estimate respiratory information
from the pressure sensors.

1. Introduction

Nocturnal home dialysis is getting increasingly popular,
and during conventional in center dialysis treatment it is
also common that patients sleep. The prevalence of sleep
apnea in the chronic kidney disease population has been
estimated to 30% or more, which can be compared to 2-
4% in the general population [1]. Automated detection of
sleep apnea is of particular interest during unsupervised
home dialysis but can also be used for detection of silent
sleep apnea, i.e., when the patient is not snoring, during
conventional dialysis treatment. Although sleep apnea is
common in patients with chronic renal failure, monitoring
of respiratory information is not part of the clinical rou-
tine during hemodialysis. Introducing additional sensors to
estimate respiratory information would cause patient dis-
comfort and increased workload for the nursing staff. To
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Figure 1. The extracorporeal blood circuit of a hemodial-
ysis machine with venous and arterial pressure sensors and
a peristaltic blood pump.

avoid additional costs for monitoring, it would be highly
desirable to take advantage of the built-in pressure sensors
of the hemodialysis machine to extract respiratory infor-
mation.

The main part of the pressure variations in the extracor-
poreal blood circuit (Fig 1) are caused by the peristaltic
pump, but variations caused by heart beats and respira-
tion are also present. These biological pressure variations
are of much smaller magnitude than the pressure variations
caused by the peristaltic pump, making extraction of car-
diac and respiratory information from the pressure signal
challenging.

Respiratory induced variations in peripheral blood vol-
ume measured using photoplethysmograpyh (PPG) has
been extensively studied [2]. Several methods have been
proposed for estimation of respiratory rate from PPG sig-
nals e.g., using respiratory induced frequency variations,
respiratory induced intensity variations, respiratory in-
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Figure 2. Overview of the method for extracting cardiac
information from the pressure signal.

duced amplitude variations [3] and frequency modulation
of the PPG waveform [4]. The pressure signal obtained
from the extracorporeal blod circuit of the dialysis machine
can be expected to contain respiratory induced variations
similar to those found in PPG signals. However, these res-
piratory induced variations are concealed by the pressure
variations caused by the blood pump of the dialysis ma-
chine.

Recently, we presented a method for extracting cardiac
information from the extracorporeal sensors of a dialysis
machine [5]. The method was evaluated on simulated and
real data, showing that heart pulse occurrence times can be
estimated fairly accurate from the pressure signal when the
magnitude of cardiac component is sufficiently large. The
purpose of the present study is to determine the feasibil-
ity of extracting respiratory information from the extracor-
poreal pressure sensors of the dialysis machine using (1)
the heart pulse occurrence times of the cardiac component
in the pressure signal and (2) respiratory induced baseline
pressure signal variations.

2. Methods

The cardiac component was extracted from the pres-
sure signal using an alternating iterative technique, where
successively better estimate of the pump-induced pres-
sure variations are subtracted from the pressure signal [5].
Briefly, the cardiac component é(¢) is estimated by sub-
tracting a modelled pump signal p(t) from the observed
pressure signal y(t), and the pump-induced pressure varia-
tion component p(t) is estimated by subtracting a modeled
cardiac signal ¢(t) from y(t), see Fig. 2. For each itera-
tion, the modelled signals (t) and é(t) are refined, which
gradually decreases the amount of pump/cardiac signal re-
mainders in the estimates.

The pump profile and the cardiac profile are two central
concepts of the signal modeling; the pump profile char-
acterizes the changes in pressure that occur during one
revolution of the blood pump, whereas the cardiac pro-
file characterizes the changes in pressure that occur during
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one cardiac cycle. Both profiles are obtained by ensemble
averaging of signal cycle segments which first have been
normalized with respect to their duration. For each itera-
tion, the cardiac profile and the pump profile are recalcu-
lated. An initial estimate of the cardiac component ¢(t) is
obtained by subtracting a periodic extension of the pump
profile from the pressure signal y(¢). The model cardiac
signal é(t) is created by concatenation of cardiac profiles
which have first been scaled with respect to the duration of
the each cardiac cycle, so that it best fits the cardiac sig-
nal é(t) in the least square error sense. When modeling
the pump signal p(t), each pump revolution has its own
individual period length, thereby accounting for the fact
that pump speed can vary slightly from revolution to rev-
olution. Similarly to the cardiac signal modeling, a least
square error criterion is employed to estimate the duration
of each pump cycle.

When the difference between successive estimates of
pump period times is sufficiently small, the iteration pro-
cess terminates and the heart pulse occurrence times are
estimated from a lowpass filtered cardiac signal &(¢) using
the mid-amplitude point of each heartbeat [6]. A uniformly
sampled and smoothed instantaneous heart rate signal was
obtained from the estimated occurrence times interval se-
ries using Berger algorithm [7]; the sampling frequency
of the heart rate signal was set to 4 Hz to match the sam-
pling frequency of the reference capnographic signal. The
short-time Fourier transform (256 point, 16s overlap) was
used for time-frequency analysis of the heart rate signal;
the respiratory rate was estimated by the position of the
maximum peak of the power spectrum in the 0.15 to 0.4
Hz range. Similar methodology was used to estimate the
respiration rate from the baseline variations of the pressure
signal, following DC-offset removal and resampling at 4
Hz, and from the reference capnographic signal, respec-
tively.

3. Dataset

The study database consists of simultaneously recorded
pressure signals and capnographic signals from 6 patients
during 7 hemodialysis treatment. The data was acquired
at Skane Universital Hospital, Lund, Sweden, in a study
approved by the local ethics review board. Patient charac-
teristics is summarized in Table 1. From each recording,
one manually selected 20-min segment with sufficient sig-
nal quality was used for evaluation.

4. Results

The spectra of 1-min segments of the baseline variations
of the pressure signal, the heart rate signal derived from
the cardiac component of the pressure signal, and the ref-
erence capnographic signal, respectively, are displayed in



Table 1. Patient characteristics.

Male (Female) 5(1)
Age (years) 61.3£13.2
Weight (kg) 84.9 £18.1
Time on dialysis (months) 52.8 £ 26.1
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Figure 3. Normalized spectra from corresponding one-

minute segments of heart rate derived from the cardiac
component of the pressure signal (dotted red), baseline
variations of the pressure signal (dashed green), and ref-
erence capnographic signal (solid blue).

Fig. 3. Whereas the spectrum of the baseline variations of
the pressure signal exhibits a clear peak almost overlap-
ping with the spectral peak of the reference capnographic
signal at 0.27 Hz corresponding to 16.2 breaths/min, the
spectrum of the heart rate signal is multimodal and its
maximum peak is located at 0.29 Hz corresponding to
17.4 breaths/min.

The differences between respiration rate estimated using
heart rate derived from extracted cardiac component and
respiration rate estimated from the reference capnographic
signal for all analyzed 1-min segments are plotted versus
respiration rate estimated from the reference capnographic
signal in Fig. 4. The corresponding differences between
estimated respiration rate using baseline variations of the
pressure signal and reference capnographic signal are plot-
ted in Fig. 5. The average difference was —0.015 & 5.38
breaths/min for respiration rates extracted from the cardiac
component, and 0.073 £ 2.55 breaths/min for respiration
rates estimated from the baseline variations of the pressure
signal.

The trends of the estimated respiration rates for one pa-
tient during 20 min, obtained from the pressure signal, the
heart rate signal derived from the cardiac component of the
pressure signal, and the capnographic signal, respectively,
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Figure 4. Differences between respiration rate estimates
from the reference capnographic signal and from the ex-
tracted cardiac component versus respiration rate estimates
from the reference capnographic signal.
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Figure 5. Differences between respiration rate estimates
from the reference capnographic signal and from the base-
line pressure variations versus respiration rate estimates
from the reference capnographic signal.

are displayed in Fig. 6. For this particular patient, the root-
mean-square (rms) error of the estimated respiration rate
obtained using the baseline variations of the pressure sig-
nal as compared to the reference capnographic signal was
0.79 breaths/min whereas the corresponding error of res-
piration rate obtained using the beat-to-beat series of the
extracted cardiac component was 3.14 breaths/min.

The distributions of rms error in estimated respiration
rate obtained from the cardiac component of the pressure
signal and the baseline variations, respectively, among the
patients in the study population are displayed in Fig. 7. The
average rms error for respiration rate obtained using the ex-
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Figure 6. Respiration rate trends of one patient estimated
using (dotted red) heart rate derived from the cardiac com-
ponent of the pressure signal, (dashed green) the pressure
signal, and (solid blue) reference capnograhic signal.
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Figure 7. Distribution of rms error of estimated respiration
rate obtained from extracted heart rate and from baseline
variations in the pressure signal, respectively.

tracted cardiac component was 4.95 breaths/min, whereas
the corresponding value for respiration rate extracted from
the baseline pressure variations was 2.10 breaths/min. Ac-
cording to the Wilcoxon signed rank test, the rms error was
significantly larger for respiration rate estimates obtained
from the cardiac component of the pressure signal than for
respiration rate estimates obtained from the baseline vari-
ations of the pressure signal (p < 0.05).
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S. Discussion and Conclusions

The feasibility of extracting respiratory information
from the extracorporeal pressure sensors of the dialysis
machine using heart pulse occurrence times of the ex-
tracted cardiac component and respiration induced base-
line variations, respectively, was tested. Estimation of res-
piration rate from the respiratory induced baseline varia-
tions proved to be significantly more accurate than estima-
tion of respiratory rate from the extracted cardiac compo-
nent of the pressure signal. One reason for this results may
be that autonomic response is often impaired in dialysis pa-
tiens [8]. Another reason may be insufficient accuracy of
the estimated heart pulse occurrent times. The results sug-
gest that it is possible to estimate respiratory information
from the pressure sensors of a dialysis machine.
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