Theoretical Study of the Role of the Funny Current (I_f) and the Background Inward Current (I_b) in Atrioventricular Nodal Conduction

Jue Li, Ian Temple, Mark Boyett

Institute of Cardiovascular Sciences, University of Manchester, UK

Abstract

The aim of the study is to theoretically explore the role of I_f in atrioventricular nodal conduction using computer simulation. The background current, I_b, is another inward current flowing during diastole and this was also investigated. We began with Inada’s model of the rabbit atrioventricular nodal action potential (N-type). There is uncertainty from experiments about the magnitude and properties of I_f. Therefore, the properties of I_f and I_b in the model were varied. Four different cases were analysed. A one-dimensional model made up of 100 elements, each 100 μm in length, was used. The diffusion coefficient, D, was set to 0.001 μS mm2. One end of the string (elements 1 to 3) was stimulated at 3 Hz. The conduction velocity was calculated from the times of arrival of the action potential at the 41th and 61th elements. In Inada’s original model, blocking I_f resulted in a 0.85% slowing of conduction, whereas blocking I_f in a modified model had a greater effect (19.4% slowing in Case 4). The results show that I_f can theoretically influence the conduction velocity of the atrioventricular node.

1. Introduction

The conduction system in the heart initiates and transmits electrical signals (action potentials), which coordinate the heart contraction. There are three main parts of the cardiac conduction system – the sinoatrial node (SAN), atrioventricular node (AVN) and His-Purkinje system. The AVN lies within the triangle of Koch bounded by the coronary sinus, tendon of Todaro, and tricuspid valve. The AVN is the only site where the action potential can pass from the atria to the ventricles. I_f (hyperpolarization-activated current) is an inward current flowing during diastole. It is an important pacemaker current in the SAN, but it is also present in the AVN. The role of I_f in generation of spontaneous activity is well established [1]. HCN (hyperpolarization-activated cyclic nucleotide-gated) channels are responsible for I_f. HCN channels are encoded by four genes (HCN 1–4). HCN4 is the main isoform expressed in the cardiac conduction system.

Surprisingly, there is functional evidence that I_f affects AVN conduction. Although ivabradine has not been shown to have an effect on the human AVN, another I_f blocking agent, zatebradine, has been shown to increase the AH interval, atrioventricular nodal effective refractory period, and Wenckebach cycle length in humans[2]. Ivabradine has also been shown to slow the ventricular response to atrial fibrillation in dogs with the mechanism thought to be the result of specific block of I_f within the AVN slowing conduction[3]. Finally, inducible cardiac specific knockout of HCN4 in mice is lethal due to the development of complete heart block (complete block of AVN conduction)[4]. This is of interest, because there is heart block (slowing of AVN conduction) in pulmonary hypertension and we have observed a downregulation of HCN4 in the AVN in a rat model of pulmonary hypertension[5].

This paper aims to theoretically explore the role of I_f in AVN conduction using computer simulation. A model of the rabbit AVN action potential (N-type) [6] was first modified to replicate the role of I_f in the spontaneous activity of the AVN. A one-dimensional model made up of 100 elements, each 100 μm in length, was used.

2. Methods

To simulate the AVN action potential, the model of the rabbit AVN action potential (N-type) from Inada et al. [6] was used. General equations are:

$$\frac{dV}{dt} = -\frac{I_{total}}{C_m}$$ \hspace{1cm} (1)

$$I_{total} = I_{Ca,L} + I_{K,r} + I_f + I_{st} + I_p + I_{NaCa} + I_b$$ \hspace{1cm} (2)

where V (mV) is the membrane potential, t (ms) is the time, I_{total} (pA) is the total membrane current, and C_m (pF) is the membrane capacitance. The total membrane current is the sum of seven ionic currents, which are shown in
A one-dimensional model was used to simulate conduction in the AVN. The model includes 100 elements and each element is 100 μm in length. The reaction-diffusion equation was used:

$$\frac{\partial V}{\partial t} = -\frac{I_{\text{total}}}{C_m} + D \frac{\partial^2 V}{\partial x^2}$$ \hspace{1cm} (3)

where D is the diffusion coefficient.

2.1. Modification of the AVN model to improve the spontaneous rate control by I_f

The role of I_f in spontaneous rate control is well established [1,4,7]. Results from Baruscotti et al. [4] from a cardiac-specific HCN4 knockout mouse model revealed a strong reduction of both I_f (by ~70%) and the spontaneous rate (by ~60%) in the SAN. In the Liu et al. [7] reported that blocking I_f increased the spontaneous cycle length in both the SAN (by ~12.85%) and AVN (by ~73.56%).

Using the original AVN (N-type) model from Inada et al. [6], block of I_f increased the spontaneous cycle length from 463 ms to 471 ms (~2% increase). The increase was much less than in experiments. In the Inada et al. [6] model, it is possible that I_f has been underestimated due to the lack of experimental data. There is uncertainty from experiments about the magnitude and properties of I_f. Therefore, it is reasonable to modify I_f. I_b is another inward current flowing during diastole. In the original AVN (N-type) model from Inada et al. [6], the conductance and equilibrium potential of I_b was adjusted to obtain a reasonable resting potential [6]. Figure 1 shows I_f and I_b currents in the original AVN (N-type) model from Inada et al. [6]. I_f is much smaller than I_b.

![Figure 1. I_f, I_b and sum of both currents in the original AVN (N-type) model from Inada et al. [3].](image)

To obtain reasonable spontaneous rate control by I_b, I_f and I_b in the N-type model were modified by increasing I_f and adjusting I_b at the same time to obtain the same action potential shape and the same spontaneous cycle length. The equations for I_f and I_b are:

$$y_\infty = \frac{1.0}{1.0 + \exp((V - V_{1/2})/k)}$$

$$\tau_y = 0.25 + 2.0 \exp(-(V - (-70))^2/500)$$

$$\frac{dy}{dt} = \frac{y_\infty - y}{\tau_y}$$

$$I_f = g_f y (V - E_f)$$

$$I_b = g_b (V - E_b)$$

where y is the activation variable of I_f, y_∞ is the voltage-dependent steady-state value of y, τ_y is the voltage-dependent time constant of y, $V_{1/2}$ is the voltage at which half activation occurs, and k is a factor determining how steeply the activation curve changes with voltage. g_f and g_b are the conductances for I_f and I_b, respectively. E_f and E_b are the equilibrium potentials of I_f and I_b, respectively.

The parameters ($V_{1/2}$, k, g_f, g_b, E_f, E_b) were chosen to be adjusted. Firstly, the parameters of I_f were defined. Secondly, the parameters of I_b were adjusted carefully to achieve the same action potential shape. Four different cases were investigated:

- **Case 1**: shift the half activation voltage of I_f by +20 mV and flatten the activation curve of I_f by increasing k from 13.56 to 20; adjust the conductance of I_b to 1.075 nS.
- **Case 2**: increase the conductance of I_f by 5 times; adjust the conductance of I_b to 1.06 nS.
- **Case 3**: shift the half activation voltage of I_f by +20 mV and increase the conductance of I_f by 5 times; adjust the conductance of I_b to 0.68 nS.
- **Case 4**: shift the half activation voltage of I_f by +20 mV, increase the conductance of I_f by 5 times and shift the equilibrium potential of I_f by +10 mV; adjust the conductance and equilibrium potential of I_b to 0.68 nS and -35 mV.

The parameters are summarised in Table 1.

<table>
<thead>
<tr>
<th>$V_{1/2}$</th>
<th>Control</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mV)</td>
<td></td>
<td>+20</td>
<td>+20</td>
<td>+20</td>
<td>+20</td>
</tr>
<tr>
<td>k</td>
<td>13.56</td>
<td>20</td>
<td>13.56</td>
<td>13.56</td>
<td>13.56</td>
</tr>
<tr>
<td>g_f</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>g_b</td>
<td>1.2</td>
<td>1.075</td>
<td>1.06</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td>E_f</td>
<td>-30</td>
<td>-30</td>
<td>-30</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>E_b</td>
<td>-22.5</td>
<td>-22.5</td>
<td>-22.5</td>
<td>-22.5</td>
<td>-35</td>
</tr>
</tbody>
</table>
2.2. The properties of the action potential in the four cases

Figure 2 shows the I_f activation curves in the control (original model from Inada et al. [6]) and Cases 1–4. The activation curve is not affected by changing the conductance and equilibrium potential of course. Therefore, I_f in the control and Case 2, and I_f in Cases 3 and 4, have same activation curve.

Figure 3 shows the action potentials in the control and Cases 1–4. It is not possible to distinguish the five action potentials from each other.

Figure 2. Activation curves of I_f in the control and Cases 1–4.

Figure 3. Action potentials in control and Cases 1–4.

Table 2. Spontaneous cycle length (CL) before and after blocking I_f in control and Cases 1–4.

<table>
<thead>
<tr>
<th></th>
<th>CL(I_f)</th>
<th>CL(no I_f)</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>462 ms</td>
<td>471 ms</td>
<td>↑12%</td>
</tr>
<tr>
<td>Case 1</td>
<td>465 ms</td>
<td>510 ms</td>
<td>↑9.7%</td>
</tr>
<tr>
<td>Case 2</td>
<td>463 ms</td>
<td>510 ms</td>
<td>↑10%</td>
</tr>
<tr>
<td>Case 3</td>
<td>464 ms</td>
<td>732 ms</td>
<td>↑58%</td>
</tr>
<tr>
<td>Case 4</td>
<td>462 ms</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

There were similar changes in Cases 1 and 2. I_f was increased and I_b decreased by similar amounts (Figure 4A); the spontaneous cycle length was increased by a maximum of ~10% on blocking I_f (Table 2). In Case 3, the changes in I_f and I_b were greater and now I_f> I_b (Figure 4B); the spontaneous cycle length was increased by ~58% on blocking I_f (Table 2). The change in spontaneous cycle length is comparable to that in the mouse AVN [7].

Case 4 was based on Case 3 and a shift of the equilibrium potential of I_f by +10 mV (-30+10= -20mV), which agrees with experimental data [8]. The equilibrium potential of I_b was adjusted accordingly (-22.5 to -35 mV) (Table 1). I_f shifted inwards (negative direction) and I_b shifted outwards (positive direction) (Figure 4C). In Case 4, spontaneous activity ceased on blocking 80% I_f: Figure 5 shows the relationship between the spontaneous cycle length and the percentage of unblocked I_f in Case 4. It shows that the spontaneous cycle length and the remaining percentage of I_f are correlated in a negative nonlinear fashion. The spontaneous activity ceased when the percentage of I_f remaining decreased to 20%.

The above demonstrates that the role of I_f in spontaneous rate control can be simulated successfully (specifically by Cases 3 and 4; Table 2) without altering the action potential shape.

Figure 4. Time course of I_f (solid line) and I_b (dashed line) in control and Cases 1 and 2 (A), Case 3 (B) and Case 4 (C).
2.3. Measurement of conduction velocity

To simulate the conduction through the AVN, a one-dimensional model 10 mm in length was used. The model includes 100 elements. One end of the model (elements 1 to 3) was stimulated at 3 Hz. The conduction velocity was calculated from the times of arrival of the action potential at the 41st and 61st elements to avoid the influence of the boundary (recording point, -20mV during action potential upstroke). The diffusion coefficient, \(D \), was set to 0.001 \(\mu \text{S mm}^2 \).

3. Results

Table 3 shows the conduction velocity measured using the one-dimensional model in the control and Cases 1–4. It shows that the conduction velocity was decreased on blocking \(I_f \). There was a substantial decrease in Cases 3 and 4.

Table 3. The conduction velocity (CV) before and after blocking \(I_f \) in the control and Cases 1–4.

<table>
<thead>
<tr>
<th></th>
<th>CV((I_f))</th>
<th>CV(no (I_f))</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.0946 m/s</td>
<td>0.0938 m/s</td>
<td>(\downarrow) 0.85%</td>
</tr>
<tr>
<td>Case 1</td>
<td>0.0972 m/s</td>
<td>0.0910 m/s</td>
<td>(\downarrow) 6.4%</td>
</tr>
<tr>
<td>Case 2</td>
<td>0.0944 m/s</td>
<td>0.0907 m/s</td>
<td>(\downarrow) 3.9%</td>
</tr>
<tr>
<td>Case 3</td>
<td>0.0938 m/s</td>
<td>0.0829 m/s</td>
<td>(\downarrow) 11.6%</td>
</tr>
<tr>
<td>Case 4</td>
<td>0.0939 m/s</td>
<td>0.0757 m/s</td>
<td>(\downarrow) 19.4%</td>
</tr>
</tbody>
</table>

4. Discussion and conclusion

In this study, we used computer simulation to analyse the role of \(I_f \) in AVN conduction. Firstly, the model of the AVN action potential (N-type) from Inada et al. [6] was verified. It was found that the model could not replicate the control of spontaneous rate by \(I_f \) arguably because the density of \(I_f \) was underestimated. It is possible that this is the result of a lack of experimental data. Secondly, \(I_f \) and \(I_{Na} \) in the N-type model from Inada et al. [6] were modified to replicate the control of spontaneous rate by \(I_f \) and keep the action potential shape and the spontaneous cycle length unchanged. Four modified cases were examined. Cases 3 and 4 are the better models in replicating the control of spontaneous rate by \(I_f \) [4, 7]. Finally, the modified models were used in a one-dimensional model to assess the role of \(I_f \) in AVN conduction. The results show that blocking \(I_f \) can lead to a slowing of conduction through the AVN and this is consistent with emerging experimental data [2–4]. It is likely that \(I_f \) controls the excitability of the cell and therefore the conduction velocity. In conclusion, the modelling suggests that \(I_f \) is not only involved in pacemaking – it is also involved in AVN conduction. This raises the possibility that downregulation of HCN4 could slow SAN pacemaking and AVN conduction – this occurs in pulmonary hypertension.

Acknowledgements

This work is supported by the British Heart Foundation (programme grant, RG/11/18/29257).

References

Address for correspondence.

Jue Li
Institute of Cardiovascular Sciences, University of Manchester
CTF Building, 46 Graffon Street, Manchester M13 9NT, UK
jue.li@manchester.ac.uk