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Abstract

Atrial fibrillation (AF) is typically detected and ana-
lyzed in a non-invasive way using the standard 12-lead
ECG. However, AF substrate complexity quantification
may be suboptimal using conventional ECG locations. We
analyzed high-density body surface potential maps of 75
patients in persistent AF to locate regions where AF com-
plexity was predominantly expressed and to search for po-
tential additional lead locations. Principal component
analysis was applied to 1 minute of AF for each patient on
the original ECG, TQ segments and extracted atrial activ-
ity (AA). Spatial complexity k0.95 was higher in AA or TQ
segments than in ECG (median k0.95, AA: 13 components,
TQ: 7, ECG: 2, p < 0.001). Normalized variance de-
scribed by the top 3 principal components was lower in AA
and TQ segments (median %, AA: 85%, TQ: 87%, ECG:
99%, p < 0.001). Maps of normalized component coef-
ficient energy showed expression of major ECG compo-
nents concentrated in the region covered by V1–V6, while
the major TQ and AA components were more dispersed
around the precordial leads, suggesting that non-invasive
assessment of AF complexity by the standard 12-lead ECG
is suboptimal. Placing additional leads around the pre-
cordial leads may improve non-invasive characterization
of the AF substrate.

1. Introduction

The standard 12-lead ECG is the default tool for the non-
invasive analysis of atrial fibrillation (AF), first of all to
detect AF, but more and more to quantify the complexity
of AF and to guide management of AF [1]. An impor-
tant question is whether the 12-lead configuration provides
the optimal set of leads to capture the relevant aspects of
AF complexity, or that other locations on the body surface
contain additional information. The body surface potential
map (BSPM) is a technique that records an ECG on many
sites on the thorax. It has been shown to be a promising

tool in guiding AF ablation [2], but its role in the day-to-
day AF care remains limited because of the extra effort
and costs involved. It does provide a possibility to locate
regions of distinct atrial activity on the body surface and
perhaps to select an optimal smaller subset of leads to rep-
resent the spatial variability of the manifestation of AF on
the body surface. Several studies already looked into this
question of body surface electrode information content and
optimal ECG lead selection [3] [4] [5], but either on a dif-
ferent arrhythmia or based on a relatively low BSPM reso-
lution. Similar to the approach taken in [6], we performed
principal component analysis (PCA) on the extracted atrial
activity (AA) of high resolution BSPMs (184 leads) of pa-
tients in persistent AF to locate regions with strong expres-
sion of principal AA components, to quantify the ability
of the precordial leads to capture these components, and
to find additional leads that improve the expression of the
spatial variability of AF.

2. Methods

2.1. BSPM data and pre-processing

BSPMs were recorded in 75 patients in persistent AF us-
ing a custom configuration of 184 leads with 120 anterior
and 64 posterior leads (ActiveTwo BSM Panels Carbon
Electrodes, Biosemi B.V., The Netherlands), as shown in
Figure 1. ECGs were recorded at a 2048Hz sampling fre-
quency. A one-minute segment was selected for each sub-
ject, low-quality leads were excluded (low signal-to-noise
ratio, poor electrode contact, motion artefacts), and Wil-
son’s Central Terminal was subtracted in line with conven-
tional ECG analysis. After band-pass filtering the signals
between 1 and 100Hz (3rd order Chebyshev), QRST can-
cellation was performed using an adaptive singular value
decomposition method, inspired by the approach in [7],
with multiple QRST window templates defined using hier-
archical clustering. The extracted atrial signals were post-
filtered with a 3Hz zero-phase highpass filter (3rd order
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Figure 1: Body surface potential mapping electrode con-
figuration, comprising 120 anterior leads and 64 poste-
rior leads. The default positions of the precordial leads
V1, . . . , V6 are marked with a thick circle.

Chebyshev) to remove low-frequency residuals not related
to (persistent) AF. For the analysis of TQ segments, T-
wave fiducial points were detected with an improved ver-
sion of Woody’s method [8]. TQ segments were then de-
trended using linear interpolation.

2.2. PCA-based computation of AF compo-
nent regions

The components describing the spatial variability of the
BSMP signals were determined by applying PCA on 1) the
original (band-pass filtered) ECG signal, 2) the de-trended
TQ-segments, and 3) the AA signal. PCA computes a lin-
ear transformation of a set of signals into a set of uncorre-
lated principal components (PC), with the first PC describ-
ing the maximum amount of variance within the signals.
Given the L × N matrix X containing N samples for all
L electrodes, PCA can be done by means of singular value
decomposition:

X = UΣVT, (1)

where U and V are orthogonal L×L andN ×N matrices
containing the left- and right singular vectors. The L×N
matrix Σ is a diagonal matrix containing the sorted singu-
lar values σi that are proportional to the amount of variance
expressed by the accompanying PCs in the matrix V. The
signal matrix X is mean-centered before PCA. As in [6],
we define the normalized variance explained by the ith PC
to be:

σ̂2
i =

σ2
i∑L

i=1 σ
2
i

, (2)

and the cumulative variance explained by the first k PCs
as:

vk =

∑k
i=1 σ

2
i∑L

i=1 σ
2
i

=
k∑

i=1

σ̂2
i . (3)

The spatial AF complexity parameter k0.95 is computed as
the number of components needed to explain at least 95%
of the variance in the signals. The mixing matrix M is the
transfer coefficient matrix that quantifies the contribution
of each PC in the original signals:

M = UΣ, X = MVT. (4)

The square of each element of the matrix M , M2
ij , de-

scribes the energy of the jth PC in electrode i. The relative
contribution of the jth PC in electrode i can be determined
by correcting for the energy of the other PCs:

Eij =
M2

ij∑L
j=1M

2
ij

. (5)

By examining this normalized matrix E we can investigate
the distribution of the relative contribution of the dominant
PCs on the body surface.

2.3. Statistical analysis

Differences in spatial complexity k0.95 between the
three signal types (ECG, TQ and AA) and cumulative nor-
malized variance vk were tested with the Friedman test,
together with the Dunn-Bonferroni test for pairwise com-
parisons.

3. Results

Spatial complexity k0.95 was significantly different be-
tween ECG, TQ and AA signals, with high complexity in
AA signals, lower complexity in TQ signals, and lowest
complexity in ECG signals (p < 0.001 for all pairwise
comparisons). The cumulative normalized variance of the
first three PCs (v3) showed a similar pattern, with almost
full variance coverage in the ECG signals and lower cover-
age in the TQ and AA signals (p < 0.001 for all pairwise
comparisons). These results are further detailed in Table 1
and Figure 2.

Average maps of component coefficient energy Eij are
shown in Figure 3 (last page). They show that in the orig-
inal ECG signal the first three components are more or
less uniformly spread over all electrode locations, with
only minor differences between leads. The components
are well-represented in the precordial leads. The TQ seg-
ments analysis reveals slightly more pronounced regions
of dominant component energy, but only in the analysis of
the AA component we start to see distinct areas of elevated
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Table 1: Spatial complexity and (cumulative) normalized
variance for the first three principal components. Values
are reported as median (interquartile range).

Parameter ECG TQ AA p-value
k0.95 2(0) 7(3) 13(7) < 0.001
v3 99%(1) 87%(7) 85%(8) < 0.001

σ̂2
1 70%(15) 48%(14) 41%(7) < 0.001

σ̂2
2 26%(15) 23%(7) 24%(5) 0.055

σ̂2
3 2%(2) 14%(6) 16%(5) < 0.001
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Figure 2: Median cumulative normalized variance vk as
a function of the number of components k for the ECG
signal, TQ segments and the extracted atrial activity AA.

component energy. The spread of AA component energy
in the interquartile range [Q1, Q3] is visualised in Figure 4,
which indicates that the normalized variance of the compo-
nents does vary between patients, but component location
is consistent. At first glance, the precordial leads do not
necessarily always seem to coincide with these areas of
high AA component energy. Table 2 shows the normalized
component energy of the precordial leads, which confirms
the relatively low presence of especially the first compo-
nent. Component 2 and 3 are better represented, in lead V2
and leads V4 − V6 respectively.

Table 2: Normalized AA component energy of the precor-
dial leads and the maximum Vmax for the first three prin-
cipal AA components over all precordial leads. Values are
given as median Eij .

PC V1 V2 V3 V4 V5 V6 Vmax

1 23% 9% 11% 10% 6% 4% 40%
2 27% 45% 33% 18% 16% 15% 66%
3 28% 15% 23% 42% 45% 45% 67%

PC1 — Q1 PC1 — Q3

PC2 — Q1 PC2 — Q3

PC3 — Q1 PC3 — Q3

0% 50% 100%

Figure 4: Spread of principal AA component coefficient
energy, expressed as the interquartile range [Q1, Q3]of Eij

(in %) for each body surface electrode location.

4. Conclusions

Principal component analysis of BSPMs in patients in
persistent AF reveals more spatial variability in the atrial
signal compared to the original ECG signal. Spatial com-
plexity was significantly higher in AA than in ECG. Av-
eraged maps of normalized component energy reveal at
least three distinct components describing spatial variabil-
ity, both in AA signals as well as - to a lesser extent - in
concatenated TQ segments. Overall component energy in
the precordial leads is not optimal. First component hot
spots are below V1 and on the higher back, above V7 − V9.
The second component is predominantly expressed in V2
and the region above V2. The third component is mainly
covered by leads V4−V6. Placing additional leads that im-
prove component expression and therefore enhance the de-
scription of the spatial variability of AF may lead to better
quantification of AF substrate complexity. Further analy-
sis of BSPM data and integration of patient treatment re-
sults into the analysis is needed to confirm the relevance of
adding the suggested lead locations to the standard 12-lead
ECG.
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Figure 3: Average component coefficient energy maps, showing average Eij (in %) for each body surface electrode loca-
tion. Precordial lead locations are marked with a thick circle.
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