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Abstract 

This study aims to provide automated screening of 
obstructive sleep apnoea (OSA) by ECG signal 

processing. Using ECG as an OSA diagnosis tool is an 

attractive alternative as it is low-cost and the diagnostic 

test can be performed at home.   

Single-lead ECG recordings were used to detect 

apnoeic events through a minute-by-minute analysis. The 

MIT PhysioNet Apnea-ECG database was used. It 

contains 70 overnight ECG recordings from normal and 
obstructive sleep apnoea patients. Thirty-five recordings 

were used for training data and the other 35 for testing. 

Time and frequency domain features were obtained. 

Classification was achieved with an Extreme Learning 

Machine (ELM) as it provided a flexible non-linear 

classifier that was fast to train.  

Classification accuracy was obtained with the hidden-

layer neurons per input (fan-out) varying between 1 and 
10. The highest accuracy was 87.7%, at a fan-out of 10,

with specificity of 91.7% and sensitivity of 81.3%. Our 

results were comparable with other published systems 

using the Apnea-ECG database. OSA can be diagnosed 

from a single-lead ECG with a high degree of accuracy. 

1. Introduction

Sleep disorders are a prevalent health issue, which are 

currently costly and inconvenient to diagnose as they 

normally require an overnight hospital stay by the patient. 

Obstructive Sleep Apnoea (OSA) is a prevailing sleep 
related respiratory disorder that reduces or causes a total 

pause of airflow accompanied by continuous attempt to 

breathe. It is identified by frequent collapse of the upper 

airway during sleep along with interruption of breathing 

which causes blood oxygen desaturation and 

consequently, sleep arousals [1][2].  

Guilleminault [3] initially defined OSA to be 

associated with at least 10 seconds of pause in breath. 
Currently, apnoea severity is measured with the apnoea-

hypopnea index (AHI) which is the average number of 

apnoea and hypopnea events per hour. If AHI is greater 

than 5, the patient is considered to be at risk for OSA [2].  

Smokers, alcohol consumers, middle-aged and older 
men, post-menopausal women, overweight and obese 

people, those with larger neck sizes or with family history 

of OSA are among groups with higher risk of OSA [2][4] 

[5]. Also, it has been reported that pregnancy may cause 

OSA in women [6]. Around 1 in 20 adults suffer from 

OSA syndrome, which is OSA with daytime effects. They 

mostly remain undiagnosed. In  addition, it is estimated 

that one in five adults endure minimally symptomatic or 
asymptomatic OSA which is scarcely diagnosed [6]. 

Previous population-based epidemiologic studies 

revealed extensive range of undiagnosed obstructive sleep 

apnoea. They also have demonstrated that even mild 

obstructive sleep apnoea can be a cause of serious 

diseases [6]. Eighty to nighty percent of adults never get 

diagnosed. Untreated OSA may lead to serious health 

issues such as cardiovascular disease, hypertension and 
stroke. Furthermore, the resulting daytime tiredness and 

sleepiness may lead to workplace and road accidents. As 

a result, diagnosis and treatment of OSA is important for 

both patients and society to reduce the health costs [7]. 

There is no doubt about the necessity of developing 

simpler diagnosis and treatment for OSA, but proposing 

reliable methods of OSA diagnosis is still contentious [6]. 

The traditional and standard method of sleep diagnosis 
is a sleep study which is called polysomnogram (PSG). It 

is a multi-channel recording of sleep state as well as 

recording electrocardiography (ECG), electrooculography 

(EOG), electromyography (EMG), oxygen saturation, 

electroencephalography (EEG), oronasal airflow and 

respiratory measurement. Patients need to stay for at least 

a night in hospital or sleep laboratories for a sleep test [2] 

[8] [5]. The test has two major problems: firstly, it is 
expensive as it needs overnight specialized staff and 

facilities. Secondly, it requires  long waiting time because 

of  limited resources [7]. Moreover, the standard sleep 

test needs the attachment of wires and electrodes which 

disturb the patient’s sleep. The patients also may have 

issues with falling asleep in the unknown environment. 

As a result, many patients prefer to go through a home 
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based sleep test which can reduce the financial cost, the 

waiting time, and provide a convenient sleep environment 

[7].    

Implementing simpler and fewer signals could be 
beneficial in development of new sleep diagnosis 

systems. This may lead to the use of less invasive sensors 

and reduce interference of sleep [9]. For instance, using 

ECG as an OSA diagnosis tool is an attractive alternative 

as it is low-cost and the diagnostic test can be performed 

at home. In this paper, single-lead ECG recordings were 

used to detect apnoeic events through a minute-by-minute 

analysis. Time and frequency domain features were 
obtained. Classification was achieved with an Extreme 

Learning Machine (ELM) which is a flexible non-linear 

classifier and fast to train. 

 

2. Input data 

The MIT PhysioNet Apnea-ECG database was used. 

The recording has been done by the standard sleep 

laboratory with a modified lead V2 position ECG. It 

comprises 70 overnight ECG recordings from normal and 

obstructive sleep apnoea patients. The length of the 

single-lead ECG signal is between 401 to 578 minutes 

and the sampling rate is 100 Hz. There are 34313 minutes 

of recording as the whole database. There were 32 
subjects consisting 25 men and 7 female [8]. Thirty-five 

recordings were implemented for training data as they are 

presented with minute-by-minute apnoea annotations and 

the other 35 for testing [10][11].  

 

 

 

 
 

 

 

 

 

 

 

 
 

 

Figure 1. Schematic representation of automatic OSA 

detection. 

 

3.  Method 

First, preprocessing has been applied to the input data. 

It consists of data cleaning procedure including the 

baseline wander and high frequency noise removal. 

Baseline wander has been removed by applying two 

median filters with 200-ms and 600-ms width to the ECG 

input signal [9]. 

3.1. QRS Detection  

The QRS times of the cleaned ECG were detected. 

They are defined as the onset times of QRS complex and 

the peak occurrence and were achieved by a single scan 

of an automatic QRS detection algorithm proposed in 

[12]. RR intervals series were calculated as the difference 

between two adjacent QRS time points.   

Next, a QRS revision and interpolation algorithm has 

been applied to the QRS detections [9] to remove false 
and interpolate missed QRS detections. This procedure 

was a part of ECG noise reduction since noise is an 

inevitable component of ECG signal recording. An 

automatic algorithm has been used which compares each 

pair of QRS or corresponding RR interval to a Robust RR 

value [9]. This Robust RR interval was obtained by 

applying a median filter with 5 sec width to RR sequence. 

It gives a robust measure of the local tendency of the RR 
sequence. By comparing adjacent RR intervals with 

Robust RR value, the missed and false QRS times can be 

identified. Then, the algorithm ignores the outlier or 

interpolates the QRS times. It leads to a more reasonable 

set of QRS times and RR interval sequence. 

 

3.2. Feature Extraction 

A set of time and frequency features was extracted 

from the QRS and RR interval sequence derived above. 

The selected features in this study were mean, standard 

deviation and power spectral density (PSD) of RR 

interval and ECG-Derived Respiratory (EDR) signal [13].  

Power spectral density of RR intervals was estimated 
for each 1-minute epoch of RR interval series against the 

index of samples or beats. Firstly, it was zero padded to 

256 points and fast Fourier transform (FFT) was applied. 

Then the mean value was removed and the squared 

magnitude of FFT coefficients was calculated. Then, the 

average of each four frequency bins was measured. Half 

of the resulting 64 points did not provide further 

information as it has a symmetrical pattern. Therefore, the 
first 32 points were used as PSD features for each 1-

minute epoch [9].   

The same features were generated from ECG Derived 

Respiratory (EDR) signal. It is a modulation signal 

resulting from respiration that affects the amplitude of 

ECG signal. There are different definitions for EDR 

measurement [14]. In this study, the bound region of the 

cleaned ECG was computed in a 100-ms window after the 
QRS detection peaks [14][15]. Then, EDR signal was 

modified by discovering the outliers. Initially, a median 

filter with 110-ms window width has been applied to 

EDR signal and it was subtracted from EDR. Then, the 

points in 10 times beyond 75% and 10 times less than 

25% of the signal were labelled as outliers and were 

eliminated.  
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Mean value, standard deviation and power spectral 

density (PSD) of modified EDR were measured for each 

1 minute epoch [13]. Finally, a mean value, a standard 

deviation and 32 PSD features were generated for both 
RR interval and EDR signal. A log transform was applied 

to all of the features as the histogram of the resulting 

features more closely approximated a Gaussian curve. 

The final step was to rescale all training data features 

so that they had zero mean and a variance of 1 when 

evaluated across all of the data. All test data was rescaled 

using the same scaling factors. 

 

3.3. ELM Classifier 

The matrix of 68 features of both RR interval series 

and EDR signal for the whole record was applied as the 

input to the classifier. Classification was done by an 

Extreme Learning Machine (ELM). It is a flexible non-
linear classifier and is fast to train. The ELM is feed-

forward network with one hidden layer. The input layer 

signals are connected to a large number of non-linear 

hidden neurons, using randomly initialized connection 

weights. The proportion of the number of hidden layer 

neurons to input layer neurons is called “fan-out” number 

[16]. The output neurons are linear and the optimising 

values for the output weights can be simply achieved in a 
single iteration. The term “extreme” is due to the 

network’s higher speed in classification, better 

generalization and less training error. It can be easily and 

quickly performed and test results on many standard sets 

has shown very good performance [17].  
 

 
Figure 2. Performance results of ELM classifier. 

 

Input layer weights were set to random values between 

-1.5 to 1.5. Tanh function was chosen as activation 

function of hidden layers, as it can be easily implemented 
in hardware. The hidden layer weights were produced in a 

single iteration by calculation of the pseudoinverse of 

hidden layer activations values and multiplying by the 

target values of the outputs [16].  

 

4. Results 

The network was trained using the 35 training records 

of the database. The performance of the network was 

evaluated using the 35 test records (x01..x35.*). 

Classification accuracy was obtained with the hidden-

layer neurons per input (fan-out) varying between 1 and 

10. The highest accuracy was 87.7%, at a fan-out of 10, 

with specificity of 91.7% and sensitivity of 81.3%. 

Classification performance results for fan-out of 1 to 10 
are shown in table 1.  

 

Table 1. Classification performance for different fan-outs. 
 

Fan-out  Accuracy(%) Specificity(%) Sensitivity(%

) 

1 84.9 87.1 81.5 

2 86.1 88.4 82.5 

3 86.4 89.4 81.5 
4 86.1 89.4 80.4 

5 86.6 90.2 81.1 

6  

7 

87.1 

86.5 

90.7 

90.5 

81.1 

80.1 

8 

9 

10 

86.1 

86.1 

87.7 

90.4 

90.3 

91.7  

79.2 

79.2 

81.3 
 

5. Discussion 

The performance of ELM classifier in the proposed 

automated detection of sleep apnoea by ECG signal was 
comparable to the results of other algorithms with the 

same ECG database as the input.  

In a comparison research of automatic and visual 

inspection algorithms of apnoea detection, different 

frequency and time domain features and different 

transformations were used [8]. The highest accuracy of 

92% was achieved by two teams that used manually 

verification of apnoeic events.  
An autoregressive model using the same database and 

features obtained the accuracy of approximately 86% 

[15].  

Another study on apnoea detection used combination 

of a number of classifiers such as AdaBoost, Decision  

Stump, Bagging and SVM as well as feature selection on 

ECG features and 𝑆𝑃𝑂2  features [18]. They compared the 

performance results of various combinations of classifiers 
and feature sets. They reported the highest accuracy of 

combination of classifiers on the combined feature set to 

be 84.4% with the highest specificity of 85.9%.  

 

6. Conclusion 

An automated algorithm to detect apnoeic epochs of 

ECG signal using ELM claffifier has been proposed. Our 
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results were comparable with other published systems 

using the Apnea-ECG database. OSA can be diagnosed 

from a single-lead ECG with a high degree of accuracy 

through this system. Future work may include using other 
non-linear function for hidden layer neurons and also 

using larger fan-out numbers.  
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