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Abstract

Epileptic seizures are typically related to autonomic
dysfunction. During seizures, the cardiac and respiratory
mechanisms are deeply affected. This effect of epilepsy
can also occur a few seconds before the seizure onset in
the EEG. In addition, the interaction between respiration
and heart rate is also expected to be affected. This study
aims to determine whether the cardiorespiratory interac-
tions change during seizures, and more importantly if they
show a transient behavior towards the seizure onset. This
is done by means of a time series method based on entropy
decomposition applied to ECG and respiratory data. Here,
the information carried by the heart rate that can be pre-
dicted by its own past, or by the past of the respiration, or
by a combination of the two, is quantified. It is shown that
cardiorespiratory interactions also change even before the
onset of focal, and absence seizures. This suggests that
early detection of focal seizures can be improved, and that
detection of seizures without a clear effect on the heart rate
(i.e. absence) can also be detected. In tonic/tonic-clonic
seizures no consistent significant change in the autonomic
controls was found.

1. Introduction

Epilepsy is closely related to dysfunction of the cardiac
and respiratory control mechanisms of the autonomic ner-
vous system [1]. It is well known that epileptic seizures
are not only accompanied by motor activity and stress re-
sponses, but also by different autonomic changes, such
as tachycardia, bradycardia and hyperventilation. Cardiac
changes are thought to be caused by the propagation of
epileptic discharges to the central autonomic network [1],
which on its turn influences the output of the respiratory
control mechanisms [2]. The presence of ictal (during
seizures) cardiac disturbances has been reported in sev-

eral studies [1][3]. In fact, these disturbances can also oc-
cur seconds before (pre-ictal) or after (post-ictal) the EEG
changes marking the onset or offset of the seizure [2][4].
Here, the focus is on pre-ictal changes, and they can be
seen as autonomic symptoms, or the first manifestations of
seizures. Therefore, they constitute an important factor for
the development of early detection systems.

As mentioned before, respiratory changes have also
been observed during different types of seizures. For ex-
ample, in [5] it was reported that seizures generated from
the temporal lobe are typically accompanied by episodes
of apnea. However, it is not yet understood whether apnea
is secondary to the seizure, or if cardiac changes result as
a response to oxygen desaturation caused by apnea [1]. It
is certain, in any case, that there is a direct and profound
effect of epilepsy on the cardiorespiratory control. Fur-
thermore, the coupling between respiration and heart rate
is thought to be affected due to deep involvement of auto-
nomic centers during seizures. With this in mind, the ques-
tion is whether cardiorespiratory interactions change “be-
fore” the EEG onset. And if this is the case, whether these
changes show a transient behavior towards the seizure on-
set. In this work, these two hypotheses are addressed by
means of the quantification of information dynamics [6].

2. Methodology

2.1. Data description and pre-processing

The dataset used in this study consists of single-lead
ECG (lead II) recordings extracted from continuous 24-
hour video-EEG monitoring of 37 children admitted to the
epilepsy clinic of UZ Leuven, Belgium. The mean age of
the patients was 9.2 years (range 3-16 years), they were
all suffering from refractory epilepsy, and none of them
was receiving any drug with chronotropic action. In total,
87 seizures were recorded, of which 48 were of focal na-
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ture, with 28 originated from the frontal lobe (FLE) and
20 from the temporal lobes (TLE), and 39 were general-
ized seizures. The latter group includes 10 generalized ab-
sence seizures (GAB), and 29 tonic or tonic-clonic seizures
(GTN). The onsets of the seizures were annotated by two
different EEG specialists based on video and EEG.

In addition to the ECG recordings, the respiratory ef-
forts measured around the abdomen (Ra) and thorax (Rt)
are also available for 18 seizures (8 FL, 10 GAB). The
sampling frequency for both the ECG and respiration is
250Hz.

Each ECG recording is used to compute the RR-
interval time series (RRI), and two ECG-derived respira-
tory signals, namely, one using principal component anal-
ysis (EDRl)[7], and another one using its non-linear ver-
sion (EDRk)[8]. The Rpeaks are located using the Pan-
Tompkins algorithm, and ectopic and missing beats are
corrected by means of a search back procedure as in [2].
When the respiratory signals are available, they are first
low-pass filtered at 2Hz, and then resampled using the po-
sition of the Rpeaks in the corresponding ECG signals. All
signals,RRI, Ra, Rt, EDRl andEDRk are filtered using a
high-pass filter at 0.05Hz in order to remove low frequency
oscillations that are not related to respiration.

2.2. Information dynamics

The cardiorespiratory interactions are quantified by
means of a time series method based on information dy-
namics [6]. Here, this method is applied on the signals de-
scribed above, and interactions between each respiratory
signal (real or estimated) and the heart rate are assessed.

Let us consider a stationary stochastic processU =
[X,Y ], with Xn andYn the observations ofU at timen.
Here,Yn corresponds to the present ofRRI, which is driven
by changes in respiration (Xn). The respiration can be de-
scribed by approximations likeEDRl andEDRk, or by real
measurements likeRa andRt, when available. In order to
quantify how much information is shared betweenYn and
its own pastY −

n = [Yn−1, Yn−2,...], and the past of the
driver signalX−

n = [Xn−1, Xn−2, . . . ], thepredictive in-
formation(PY ) can be computed as

PY = H(Yn)−H(Yn|X
−

n , Y −

n ). (1)

Note thatPY can be computed by subtracting thecondi-
tional entropyof Yn knowing the past ofU , from theShan-
non entropyof Yn. By including the conditional entropy of
Yn knowing only the past of one of the two variables inU ,
one can computePY using the following expressions:

PY = H(Yn)−H (Yn |Y
−

n
) + H (Yn |Y

−

n
)−H(Yn|X

−

n , Y −

n ), (2)

or,

PY = H(Yn)−H (Yn |X
−

n
) +H (Yn |X

−

n
)−H(Yn|X

−

n , Y −

n ). (3)

In (2), H(Yn) − H(Yn|Y
−
n ) corresponds to theself en-

tropy (SY ), which is the information carried byYn that
can be predicted from its own past, andH(Yn|Y

−
n ) −

H(Yn|X
−
n , Y −

n ) refers to thetransfer entropy(TX→Y ),
which describes the amount of information carried byYn

that can be predicted by the past ofXn without taking
into account the past ofYn. In (3), the amount of infor-
mation inYn predicted from the past ofXn is described
by the first term, which corresponds to thecross-entropy
(CX→Y ), and the residual amount of information inYn

retrieved by its own past is quantified by theconditional
self entropySY |X . All the entropy terms mentioned above
are computed by means of the covariance matrix, as stated
in [9] and applied to Gaussian distributed variables [10].
The Akaike information criterion was used to determine
the model order in this implementation.

On the one hand, when the amount of information trans-
ferred from the respiration to the heart rate is large, the
values ofCX→Y andTX→Y are expected to be also large.
This can be interpreted as the strong modulation of the
heart rate produced by the respiratory sinus arrhythmia.
On the other hand, when the heart rate is more predictable,
which can be seen as a limiting factor to react to acute
situations like seizures, the values ofSY |X andSY are ex-
pected to be large. In other words, the amount of informa-
tion carried by the heart rate that can be predicted from its
own past is large. The main difference betweenSY |X and
SY is thatSY |X describes the influence of physiological
mechanisms, other than respiration, that produce a more
predictable heart rate, whileSY may also incorporate res-
piratory influences.

2.3. Dynamic computation of cardiorespi-
ratory interactions

In order to determine whether there is a transient be-
havior in the cardiorespiratory coupling before/during the
seizures, it is important to consider the non-stationary
nature of the signals, especially around seizure activity.
Keeping this in mind, a moving window of 100 heart
beats (HB) with an overlap of 99 HB is used to ana-
lyze the data. For each window, a set of entropy values
Sri = [CX→Y , SY |X , TXY→Y , SY ] is computed, with
r = [EDRl, EDRk, Ra, Rt], i = 1, . . . , N , andN the total
number of windows in the signal.

3. Results and discussion

For the analysis, segments of 5 minutes were extracted
from the dataset, starting 3 minutes before the seizure on-
set. Following the procedure described above,N sets of
entropy parameters{Sri}

N
i=1

were computed for each pair
[RRI,EDRl], [RRI,EDRk], [RRI,Ra], [RRI, andRt], consid-
ering that the last two pairs were only available for 18

918



200 250 300 350 400 450 500
0

1

2

200 250 300 350 400 450 500
0

0.5

1

200 250 300 350 400 450 500
0

1

2

200 250 300 350 400 450 500
0

0.5

1

200 250 300 350 400 450 500
400

600

800

R
R

I(
m

s)
C
X

→
Y

S
Y

|X
T
X

→
Y

S
Y

Time (s)

Figure 1. Information dynamics analysis of aRRIsegment
around a generalized seizure. The red dashed line indicates
the onset of the seizure in the EEG. Note that the heart
rate changes even before the EEG onset, and interactions
between respiration and heart rate, are also affected by the
seizure.

seizures. These sets were computed for all 87 ECG seg-
ments.

In Figure 1 it is shown that there are indeed transient
changes in the amount of information transferred from res-
piration to heart rate. Furthermore, it can be seen that
these changes start occurring before the seizure onset in the
EEG, which means that these can be used for early detec-
tion of epileptic seizures, even when no “obvious” changes
in heart rate are present. In order to quantify the changes in
cardiorespiratory interaction around the seizures, the mean
value for each entropy parameter was computed in a win-
dow of 60s around the seizure onset. This value was then
compared with the one computed from a window of 60s
in a seizure-free region. Differences between these values
were evaluated with a confidence interval of 95% using the
Kruskal-Wallis test.

It turns out that the interactions between respiration and
heart rate depend on the type of seizure. Hence, the find-
ings for the two types of seizures will be described sepa-
rately in more detail below.

3.1. Focal seizures

Figure 2 shows the self entropySY (left panel) and the
conditional self entropySY |X (right panel) for four dif-
ferent respiratory signals (EDRl,EDRk,Ra, andRt). The
values ofSY andSY |X for segments around the seizures
(light grey boxplots) are compared with the values ofSY

and SY |X within a normal segment (dark grey). Note
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Figure 2. Self entropySY and self conditional entropy
SY |X values around the seizure onset, and during seizure-
free activity. Four different respiratory signals were used,
and significant differences are indicated by (*). Note that
the discrimination of epileptic seizures is enhanced when
the amount of information shared between the present of
the heart rate, and its own past without removing respira-
tory influences (i.e.SY ), is used.

that the information shared between heart rate and its own
past (SY ) is significantly different around the onset, which
means that a more predictable heart rate is present around
seizures. This has already been investigated in previous
studies [4][5], where it was shown that this effect is more
significant for TLE. However, here it is observed that the
seizures originated from the frontal lobe, are also accom-
panied by highly predictable heart rates, and can be easily
classified using these values of entropy.

An important observation is the predictive role of res-
piration. This can be seen whenSY (left panel) is com-
pared withSY |X (right panel), as the differences are not as
significant anymore when influences of respiration are re-
moved (i.e.SY |X ). Furthermore, it is remarkable that clear
separations can be obtained even with an ECG-derived
respiratory signal, which can be important in applications
where a limited amount of sensors is available.

An explanation for these changes in cardiorespiratory
information dynamics in TLE and FLE, can be found in
the anatomic localization, relative to the central autonomic
network, of the temporal and frontal lobe structures [2].
This proximity allows for the propagation of epileptic dis-
charges from one of these lobes to the central autonomic
network, which can result in cardiac and respiratory dis-
turbances.

3.2. Generalized seizures

A different situation is observed for generalized
seizures. Here a distinction is made between tonic/tonic-
clonic, and absence seizures. Figure 3 shows that the
amount of information shared between the past of respi-
ration and the present ofRRI (i.e. CX→Y andTX→Y ) is
significantly reduced in absence seizures. This is an im-
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Figure 3. Cross entropyCX→Y and transfer entropy
TX→Y for regions around absence seizures and general-
ized tonic/tonic-clonic seizures, compared with values for
seizure-free regions. The respiratory signal used in this
case corresponds toEDRk. However, the results do not
differ significantly when a different respiratory signal is
used. The significant difference is indicated by (*).

portant finding, since this type of seizures do not show a
consistent effect on the heart rate [2]. The later can be con-
firmed from the measurements ofSY |X , during absence
seizures. A slight increase in the residual information ex-
plained by physiological parameters, other than respira-
tion, is observed. However, this increase is not significant,
which is in agreement with previous findings reported in
the literature [5]. The reason why the respiration plays a
significant role in this type of seizures can be explained by
the involvement of the thalamocortical network in absence
epilepsy [2].

Concerning tonic/tonic-clonic seizures, no significant
differences were found. This is not a surprise, since this
type of seizures are characterized by motor activity, which
needs to be considered when recording signals like the
ECG. For this reason, other modalities need to be taken
into account to be able to find physiological changes that
may lead to this type of seizures.

4. Conclusion

This study shows that the cardiorespiratory interactions
are significantly affected during seizures, but more impor-
tantly, they show a transient behavior towards the seizure
onset. This allows for early detection of epileptic seizures,
which can contribute to the improvement of closed-loop
systems like vagus nerve stimulation (VNS), and to the
development of alarm systems and more accurate drug-
delivery mechanisms.

It was also shown that absence epilepsy has a profound
effect on the cardiorespiratory interactions, which repre-
sents an important finding for patients suffering from this
type of epilepsy. Future studies will include the validation
of these results on a bigger dataset, and the complete anal-
ysis in adult epilepsy.
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