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Abstract 

A variational 3D phase-based registration approach 
for the alignment of reconstructed cine volumes from 
short- and long-axis cine CMR slices is proposed. The 
algorithm performance is validated comparatively with 
an equivalent intensity-based approach on an artificially 
generated phantom volume with a pre-prescribed 
intensity difference. Final results are shown for the 
registration of clinical cine CMR volumetric alignment. 

1. Introduction

The provision of both anatomical and functional data 
relating to healthy and pathological cardiac tissue by 
cardiovascular magnetic resonance (CMR) imaging has 
been invaluable, enabling earlier diagnosis and 
improvement in effective treatment of ischaemic heart 
disease. 

In patients who have suffered cardiac injury, such as in 
cases of myocardial ischaemia, longitudinal analysis of 
the diseased tissue composition provides important 
information regarding left ventricular (LV) remodelling. 
To perform such longitudinal analysis, it is necessary to 
establish a correspondence between tissues imaged on 
separate occasions. Conventional 2D registration of 
clinical CMR images acquired at different times has been 
used for the comparison of imaging findings. However, it 
is well known, and we have previously shown [1], that 
discrepancies exist between image planes selected on 
separate hospital visits, resulting in significant out-of-
slice displacements which cannot be compensated by 2D 
registration.  

As a result of these observations, in this paper, we 
propose a 3D registration approach for longitudinal CMR 
analysis based on a variational optical flow framework. 

Moreover, we propose the use of a registration approach 
whose similarity metric is based on local phase rather 
than image intensities. We propose such an approach 
because of the non-quantitative relationship between 
tissue characteristics and image intensity in CMR, as a 
result of which corresponding tissues imaged on separate 
hospital visits may have significantly different intensities. 
Local phase is a contrast independent descriptor of image 
structure and is thus not affected by such intensity 
inconsistencies.  

A large amount of literature exists relating to the 
registration of cardiac data – for reviews see [2,3]. In 
relation to our own work we note [4,5] where optical flow 
methodologies have been used for cardiac MR 
registration, whilst phase-based similarity metrics have 
been previously looked at in [6,7] in the context of 
cardiac MR data alignment. 

2. Materials and methods

2.1. Artificial data 

A synthetic phantom image, representing the left (LV) 
and right (RV) ventricles as well as the myocardium of an 
idealised heart was created. The phantom provides data 
with a known ground truth for validation purposes. In all 
validation tests Gaussian white noise was added to the 
original phantom image. 

2.2. Clinical data  

Image datasets were acquired using a SIEMENS 
TrioTim 3 Tesla scanner at the John Radcliffe Hospital, 
Oxford. For each subject two studies were acquired, the 
second obtained 6 months after the first. Each data set 
consisted of on average 3 long-axis (LA) images and a 
short-axis (SA) cine stack with 8 to 10 slices. The SA 
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slices had pixel sizes of approximately 1.56mm x 
1.56mm x 8mm. The SA stack slices were acquired at 
regularly spaced (10mm) locations along the LA 
orientation. The pixel size in LA images was 
approximately 1.41mm x 1.41mm x 8mm. The relative 
positions of all SA and LA slices in the datasets were 
available via the DICOM header. In addition to the cine 
scans, other CMR scans including late gadolinium 
enhancement images were acquired as part of the 
protocol. However, the work presented in this paper deals 
only with the cine scans.  

In order to perform 3D registration, volumetric 
reconstruction must first be undertaken using information 
from both the SA and LA cine MR data. Intensity 
differences between SA and LA data require the use of an 
intensity correction algorithm. The intensities in the LA 
are corrected based on methods presented in [8]. The first 
and second order intensity moments at the SA-LA 
intersection points are matched and these corrections 
propagated to neighbouring LA pixels based on intensity 
similarities. From the newly corrected image data 
isotropic volumetric representations of the imaged cardiac 
tissue may be generated.  

 
2.3. Registration framework 

The classical optical flow registration approach is 
based on an intensity constancy assumption, formulated 
as in equation 1.  
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Linearization by Taylor’s expansion gives the optical 
flow constraint equation written in equation 2 where  is 
approximated by the difference between the two images, 

, , and  are oriented differentials of the image and 
, , and  compose the unknown deformation field 

between the two images.  
The ill-posed nature of the optical flow constraint 

equation requires further constraint in order to find a 
unique solution. In [9] a methodology is proposed which 
enforces the global smoothness of the deformation field 
allowing a solution via the the corresponding Euler-
Lagrange equations. A local approach is adopted in [10] 
where the assumption of flow uniformity in local 
neighbourhoods enables calculation of a unique solution. 
There are known disadvantages to both local and global 
approaches however, those being the sparsity of the final 
solution and a higher susceptibility to image noise 
respectively. 

A desirable algorithm is therefore one that combines 
the advantages of both local and global methods. Such a 

method was presented by Bruhn and Weickert in [11]. 
This is the framework utilized in our proposed approach, 
however rather than base our similarity metric on 
intensity values as in the original paper we use the 
difference of local phase values as our metric. 

 
2.4. Local phase calculation 

As previously mentioned there is no guarantee of 
intensity constancy between cine MR images acquired 
during different imaging sessions. As a result metrics 
based on the image intensities may not lead to satisfactory 
registration solutions.  

In monomodal registration we expect the images to 
contain the same tissue structures; therefore a method 
which utilizes this shared information is desirable. A 
viable option in such cases is local phase which can be 
used as a brightness and contrast invariant descriptor of 
image structure.  

When considering a 1D signal, local phase can be 
calculated from the analytic signal. A number of 
approaches have been proposed to extend the concept of 
the analytic signal to higher dimensions. Two commonly 
used are the application of multiple directional quadrature 
filters, which enable the approximation of motion along 
the given orientation, or alternatively the monogenic 
signal. 

In the work presented here we utilized 9 oriented 
filters as proposed in [12]. Our local phase values replace 
the intensity values that were previously used in Bruhn-
Weickert’s local-global registration framework. The form 
of the modified registration framework is shown in 
equations 3 and 4. In equation 3  is used to control the 
influence of the local and global components to the final 
deformation field solution, whilst in equation 4 the 9 local 
phase ( ) responses to the directional filters are 
combined, before applying a Gaussian filter of variance 

, denoted by , for local smoothing. 
The final part of the registration algorithm is the 

inclusion of a confidence measure which gives higher 
weights to some phase values in the images relative to 
others, denoted by   in equation 4. The confidence 
measure used was utilized by Hemmendorff in [12]. The 
aim of the confidence measure is twofold: to eradicate 
any phase singularities occurring due to interfering 
frequencies and to increase the influence of strong edges 
over weak ones. The confidence measure is composed of 
4 terms based on the filter output magnitude, the phase 
linearity, the phase gradient similarity and the frequency 
reliability. 
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3. Results 

3.1. Phantom 

The known segmentations of the LV, RV and 
myocardium in our phantom data set enable the 
calculation of overlap metrics to determine the relative 
accuracy of the registration algorithm under different 
conditions. A range of displacement and angular offsets 
were applied to the phantom and the results of registration 
quantified in terms of overlap accuracy using the Dice 
coefficient (DC). The offsets were varied in x, y, and z 
between 0mm and 6mm, whilst the angular change was 
varied between 0o and 12o. The mean Dice coefficient, 
taking into account all combinations of offsets, were 
0.9614 ± 0.0202, 0.8916 ± 0.0543 and 0.8160 ± 0.0830 
for the LV, RV and myocardium respectively. 

A second test was performed to compare the results 
obtained using our phase-based implementation with 
results obtained using the equivalent intensity-based 
implementation, where the derivatives of phase in 
equation 4 are replaced by the intensity derivatives. Our 
hypothesis is that our phase-based method copes better 
with potential intensity variations between the images 
being aligned. For this reason the test carried out involved 

a small selection of offsets tested with a range of intensity 
differences applied between the images. The intensities of 
each image component (the LV, RV and myocardium) 
were varied such that the absolute intensity differences 
between corresponding structures in the two volumes 
took values starting at 0% up to a maximum difference of 
40%. The Dice coefficient results for the LV are shown in 
figure 1. The results for the RV and myocardium 
followed similar trends. 
 
3.2 Clinical data 

Registration was performed on reconstructed cine 
volumes from patients who underwent CMR imaging on 
two separate visits to the hospital. Example results are 
shown in figure 2.  

 
4. Discussion 

A local phase-based 3D registration method was 
proposed which combines the benefits of global and local 
methods. The use of phase increases the robustness of the 
algorithm to noise and intensity differences between 
images.  

1) Phantom Study: The algorithm was first tested on a 
phantom image where initial results were promising, 
achieving reasonable Dice coefficients consistently over a 
range of offset values. Our hypothesis that our phase-
based method would be more able to deal with intensity 
differences than an intensity-based method was also 
confirmed by the results shown in figure 1. We see that 
beyond 10% intensity difference our phase-based method 
consistently performs better.  

2) MRI Study: Results for real data shown in figure 2 
all show successful alignment of longitudinal studies. 
Continuation of contours can be clearly seen in each case. 
Whilst these preliminary results are promising, further 
validation using quantitative measures of accuracy needs 
to be undertaken. A second limitation to the current work 
is that it requires a reasonably close initialisation. It may 
be necessary therefore in future work to look at 
initialisation registration methods that use either a rigid or 
affine motion model. 

 

Figure 1.  Dice coefficients calculated for both 
phase- and intensity-based registration 
over varying intensity differences. 
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Figure 2.  (a)→(c) show the original images in a checkerboard pattern (top left and bottom right quadrants from 
one visit, bottom left and top right from the other). (d)→(f) show the same slices after registration. 
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