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Abstract 

The aim of this work was to find an easy and efficient 
method for automatic detection of artefacts in ICG 
signals. Form factors characterising the shape of the 
signal were selected because of the simplicity of 
implementation and the low computational cost. Different 
form factors were used to compare a single ICG heart 
cycle with a pattern and classify it as valid or artificial. 
The pattern was made by averaging 50 consecutive 
evolutions synchronized by the Q wave in an 
accompanying ECG signal. If the absolute difference 
between values of the same form factor calculated for the 
single evolution and for the pattern is lower than the cut-
off point, it is recognized as valid; otherwise, it is marked 
as artefact. 

The main objective of the study was to choose the most 
effective of the commonly-used form factors. Effectiveness 
was determined by using the area under the curve in 
receiver operating characteristic analysis. The necessary 
data were obtained by analysing the absolute difference 
between the values of the same form factor calculated for 
a single, manually classified evolution and for the 
pattern. We analysed cycles produced by 5 minutes of 
impedance cardiography observation in each of 20 
subjects. The best efficiency was identified for the 
normalized standard deviation of the cycle from the 
pattern. In this case, area under the curve (AUC) was 
0.86 and the cost-effective cut-off point was 56.76. 

1. Introduction

The use of impedance cardiography (ICG) is still not 
widely applied in Holter-type monitoring. The main 
reason is the fact that ICG signal is about one hundred 
times weaker than ECG signal and more vulnerable to 
interference. There are many different types of artefacts 
in ICG signals, but the most difficult to detect 
automatically are those associated with temporary loss of 

connection between the skin and the application 
electrode. Conventional methods of artefacts removal, 
like band pass filtration [1-4], are not effective because 
the signal band overlaps with the noise band. Finding an 
effective method for automatic evaluation of a single 
heart cycle could increase the interest in ambulatory 
applications of  ICG.   

2. Material and methods

In this study, we used a new version of a previously 
described computer program that automatically identified 
characteristic points in the electrocardiographic (ECG) 
and impedance cardiography  (ICG) signals [5, 6]. 

2.1. Pattern of ICG signal 

The most significant improvement in the program 
involved the option of adapting the pattern (Fig. 1), which 
was recalculated every 1000 sequences (about 17min). It 
was created by averaging 50 consecutive cycles 
synchronized by the Q wave in the ECG signal.  

Figure 1. The pattern of the QQ cycle with characteristic 
points marked. B – where the curve crosses the baseline; 
C – the maximum for the segment; X – the minimum for 
the segment [5]. 
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After automatic detection of characteristic points, the 
program calculates form factors (FF) and basic cardiac 
hemodynamic parameters: heart rate (HR), pre-ejection 
period (PEP), left ventricular ejection time (ET), stroke 
volume (SV), cardiac output (CO) and other, derivative 
ones. 

 
2.2. Form factors used for evaluation of 
ICG signal 

FF’s, which are a quantitative method for evaluation of 
signals, allow one to obtain classification accuracy 
comparable to that of other, much more complex 
methods. They can be calculated for both 2D and 3D 
objects. Changes in each signal can be plotted as a 
function of time, and the curve thus produced may be 
treated as a 2D image. The undeniable advantages of 
these shape measures include their low computational 
cost and simplicity of implementation. The main problem 
is the fact that they must be selected individually 
depending on particular issues. There are no universal 
FF’s, but some have more applications than others. 

We discovered that in most cases, form factors 
describing QX segments give better results than those 
calculated for whole QQ segments. So far, many of the 
popular FF’s were tested [7-9]. We present five which, in 
our opinion, have potential for further study. 

 
Table 1. The definitions of the selected form factors. 
 

 

 

 

 

 
 
where: 

GA – the number of samples having values greater than 
the average 
LA – the number of samples having values less than the 
average 

L – the circumference of the QX segment 
S – the surface area relative to the average value for the 
QX segment 
SU – the surface area with a value below the average of 
the QX segment 
SA – the surface area with a value above the average 
value of the QX segment 

The fourth factor (FF4) is the average of the signal’s 
rising speed (absolute value of the first derivative). The 
fifth factor (FF5) is the standard deviation of the cycle 
from the pattern, normalized according to both the length 
of QX and the maximum amplitude of the dZ/dt signal. 

 
2.3. Test data 

As input data, twenty five-minute fragments of ICG 
signal were used (each from a different patient). Then, 
individual cycles were classified manually: artefact (1), 
normal (0). Comparing manual classification and absolute 
difference between the value of the same form factor 
calculated for the single evolution and for the pattern 
gave us enough information to plot the receiver operating 
characteristic (ROC). For this purpose, we used a 
MATLAB function created by Giuseppe Cardillo [10]. 

This function automatically draws the ROC curve and 
calculates the area under the curve (AUC) and the cost-
effective cut-off point. The AUC is equal to the 
probability that a classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative 
one (assuming “positive” ranks higher than “negative”) 
[11]. The cost-effective cut-off is the point on the ROC 
curve the shortest distance from the upper left corner. It 
corresponds to the optimal cut-off value for the form 
factor. 

For each optimal cut-off point, which was also the 
experimentally-determined tolerance for the FF, the 
confusion matrix and basic statistical parameters were 
designated. The statistical parameters are: sensitivity - 
TP/(TP+FN), specificity - TN/(TN+FP), positive 
predictive value - TP/(TP+FP) and negative predictive 
value - TN/(TN+FN). 

 
3. Results 

The collected information enabled comparison of the 
various form factors is presented in Table. 2 and Table 3 

 
Table 2. Area under the curve (AUC) and the level of cost 
effective cut-off (CEC) for analysed form factors. 
 
 FF1 FF2 FF3 FF4 FF5 

AUC 0.77 0.81 0.71 0.78 0.86 

CEC  0.176 0.148 0.011 1.467 56.76 

1
2

2 
nS

L
FF

LA

GA
FF 1

SA

SU
FF 3

1
1 1

4 


   

n

xx
FF

i

n

n i

 
1

1

2

5 


  

n

yx
FF

n

n ii

970



Table 3. Sensitivity, specificity, positive predictive value 
(PPV) and negative predictive value (NPV) for analysed 
form factors. 

 
 FF1 FF2 FF3 FF4 FF5 

Sensitivity 71% 69% 64% 69% 79% 

Specificity 73% 81% 68% 79% 78% 

PPV 46% 54% 40% 52% 54% 

NPV 88% 89% 85% 88% 92% 

 
Figures 2–6 and tables 3–8 present the ROC curves 

and the confusion matrices, respectively, for each FF. 
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Figure 2. ROC curve for FF1 (sensitivity v 1-specificity).  

 
Table 4. Confusion matrix for FF1. 
 

 Manual 
Artifact Valid 

A
ut

om
at

ic
 Artifact 1188 

(TP) 
1396 
(FP) 

Valid 490 
(FN) 

3683 
(TN) 

 
Table 5. Confusion matrix for FF2. 

 
 Manual 

Artifact Valid 

A
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 Artifact 1159 

(TP) 
977 
(FP) 

Valid 519 
(FN) 

4102 
(TN) 
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Figure 3. ROC curve for FF2 also known as 
Malinowska’s factor. 
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Figure 4. ROC curve for FF3 (sensitivity v 1-specificity).  

 
Table 6. Confusion matrix for FF3. 

 
 Manual 

Artifact Valid 

A
ut

om
at

ic
 Artifact 1068 

(TP) 
1609 
(FP) 

Valid 610 
(FN) 

3470 
(TN) 

 
Table 7. Confusion matrix for FF4. 

 
 Manual 

Artifact Valid 

A
ut

om
at

ic
 Artifact 1155 

(TP) 
1083 
(FP) 

Valid 523 
(FN) 

3996 
(TN) 
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Figure 5. ROC curve for FF4 (sensitivity v 1-specificity).  
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Figure 6. ROC curve for FF5 (sensitivity v 1-specificity).  

 
Table 8. Confusion matrix for FF5. 

 
 Manual 

Artifact Valid 

A
ut

om
at

ic
 Artifact 1331 

(TP) 
1132 
(FP) 

Valid 347 
(FN) 

3947 
(TN) 

 
 

4. Discussion and conclusions 

It seems that the conclusion based on our preliminary 
results presented in a previous article [7] were too 
optimistic. Despite numerous attempts, none of the form 
factors reached a sensitivity of 80% or a specificity of 
85%. On this basis, we can conclude that usage of only 
one of the tested  FF’s seems insufficient for automatic 
recognition of artefacts in ICG signal. On the other hand, 

using a combined criterion consisting of a few shape 
descriptors should improve the detection ability of the 
algorithm. Unfortunately, this would also increase the 
computational complexity of whole algorithm and raises 
new signal recognition problems. 
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