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Abstract 

The accuracy of high resolution electrocardiogram 
(HRECG) as a risk stratification tool relies on QRS offset 
detection, which is subject to variation due to signal 
residual noise level (RNL). This study proposed a 
technique for improving the accuracy of QRS offset 
detection, based on successive signal derivation (DER) 
and compared to the standard method recommended by 
the American College of Cardiology (ACC). The control 
group was composed by 18 healthy volunteers with no 
cardiac disease and SMVT Group by 18 subjects with 
sustained monomorphic ventricular tachycardia. Mean 
QRS duration was compared by paired Student t-test 
between groups. Sensitivity, specificity and predictive 
values (PV) were compared by χ2 test. For ACC and DER 
methods, the QRS offset was determined at a range of 
different RNLs simulated in the HRECG signal (from 0.2 
to 0.8 μV), and the occurrence of linear correlation was 
tested (α < 0.05). Mean QRS duration calculated by DER 
showed no differences when compared to blind visual 
detection by a specialist. Positive PV was higher in DER 
than ACC (p < 0.05). Linear correlation between QRS 
offset and RNL was found in ACC method for both 
groups. The DER method showed higher accuracy and 
lower sensitivity to RNL than standard ACC for QRS 
offset detection. 

1. Introduction

The high resolution electrocardiography (HRECG) is 
a non-invasive diagnostic tool employed to stratify 
individuals at risk for developing life threatening 
ventricular arrhythmias secondary to reentry mechanism, 
and accurate results have important clinical implications 
[1]. The terminal region of the QRS complex and the 
beginning of the ST segment are analyzed to identify the 
presence of ventricular late potentials (VLP), which are 
signals originated from abnormal ventricular activation 
over the damaged myocardium [2]. 

Currently, the standard assessment of the HRECG is 

based on time domain analysis [2, 3], and the success of 
the diagnostic evaluation depends on the correct signal 
alignment and identification of both onset and offset 
points of the QRS complex [4]. On the other hand, the 
morphology and the location of VLPs, as well as the 
parameters employed in signal acquisition and 
processing, even when standardized [3], influence the 
precision and the accuracy of QRS complex end points 
(QRS offset) estimation. A residual variability in QRS 
duration in successively performed exams is, thus, 
observed in the same patient [5]. Notwithstanding, the 
QRS duration is the most important index for the risk 
stratification of ventricular arrhythmia [6, 7].  

By averaging successive beats, it is possible to reduce 
the interference or noise whereas relevant signal 
waveforms are preserved, allowing the identification of 
VLPs [8]. It is noteworthy that detection algorithms of 
fiducial points in current practice are based on a threshold 
level detector, which is calculated from the signal 
averaged residual noise level (RNL) [3]. 

Several studies have been carried out to investigate 
the capability of HRECG to detect individuals at high risk 
of developing ventricular tachycardia and the effect of the 
RNL on the variability of measured diagnostic indexes [5, 
9, 10, 11]. Thus, this study assessed a novel technique for 
QRS complex limits detection, based on successive signal 
derivation (DER), and tested its performance on detecting 
QRS offset over a range of signal RNL. 

2. Materials and methods

2.1. Study population 

The ECG signals were extracted from an existing high 
resolution ECG database [12]. The study protocol was 
approved by the National Institute of Cardiology Ethics 
Committee (protocol: 0190/12.02.2008), and informed 
consent was obtained from each volunteer. Two different 
groups were adjusted by age, gender and anthropometric 
indexes: a Control Group consisted of 18 healthy 
volunteers' signals, age 52.1 ± 10.2 years (mean ± 
standard deviation), without documented heart disease; 
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and the SMVT Group (age 58.7 ± 12.9 years), comprising 
18 subjects with past history of syncope of cardiac origin 
and documented sustained monomorphic ventricular 
tachycardia, either spontaneous or induced in 
electrophysiology study. Subjects in both groups were in 
sinus rhythm, and none presented complete bundle branch 
block. 
2.2. Signal acquisition and processing 

The HRECG signals were acquired using modified 
bipolar Frank XYZ orthogonal leads. Digital data were 
processed with custom-made pattern recognition software 
[8]. Each lead was analyzed to exclude ectopic and 
excessive noisy beats (a beat rejection automatically 
eliminated the following beat). Using the X-lead as a 
reference, the system identified each beat, after a template 
generated and updated until the 10th consecutive normal 
accepted beat. To be considered compatible with the 
template, a given beat had to present a minimum 
correlation coefficient to 0.99. Each accepted beat was 
appropriately synchronized, according to an algorithm 
modified from Jane et al. (1991) [13], and averaged after 
weighting with the inverse of the spectral power between 
40-250 Hz and carried out until a RNL below 0.2 µV. 

Each lead was, then, bidirectionally filtered 
(Butterworth 4th order / 40-250 Hz band-pass) and 
gathered in the vector magnitude (Vm = 222 ZYX  ), 
in which were identified the QRS offsets [2, 3]. 

In each signal was added a range of different 
simulated RNLs (0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 µV) 
that were within the standardized limits for clinical 
HRECG use [3]. The RNL was implemented with a 
normally distributed random number generation function. 
The verification of generated RNL was carried out by 
variance calculation in a 100 points window width 
located over the baseline. For each level, noises were 
statistically compared by the χ2 test (α = 0.05). 

Then, the ventricular activation boundaries 
(QRS duration) in the Vm was carried out by three 
methods: i) recommendation by ACC (ACC method), ii) 
proposed, based on successive derivatives of Vm (DER 
method), iii) visual method (VIS) performed manually by 
an independent specialist, blind to study groups. 

 
2.3. Standard HRECG analysis (ACC) 

In the ACC method, the baseline noise was estimated 
as the lowest standard deviation (SD) obtained from a 
40 ms window, swept throughout the Vm window at 1 ms 
steps. The QRS limits are determined automatically, and 
defined as the midpoint of a 5 ms segment (displaced 
from the extremes to the center of the Vm window) in 
which the mean amplitude exceed the baseline noise plus 
three times its SD [3]. 

After filtered QRS complex boundaries were 
determined by both algorithms, standards parameters 
were calculated in order to assess VLP: DUR- duration of 
the QRS complex in Vm, LAS40- the duration of the 
signal below 40 μV at the terminal region of the Vm, and 
RMS40- the root-mean-squared amplitude of the latest 
40 ms of the Vm. The diagnostic exams were considered 
positive when two or more parameters have abnormal 
values: DUR > 114 ms, LAS40 > 8 ms and 
RMS40 < 20 μV. When RMS40 < 4 μV the exam was 
positive regardless of the other values [14]. 

 
2.4. Derivative-based method (DER) 

The DER method employed as baseline noise estimate 
the lowest RMS value (RMSnoise) calculated in a 40 ms 
window, swept throughout the Vm window at 1 ms steps. 
For automatic determination of the Vm QRS boundaries, 
first, the RMS value of a 5 ms segment centered at its 
midpoint was calculated, and this value was divided by 
RMSnoise, defining the RMSrelative ratio. The QRS 
complex boundaries were, thus, calculated as follows: 

i) QRS onset - the first of three consecutive points in 
which RMSrelative exceeds the threshold arbitrarily set at 
10. 

ii) QRS offset - backwards search was carried out 
from the ST segment to the ventricular activation, with 
the threshold set at 20, to identify a point within QRS 
complex near its terminal region. For precise QRS offset 
identification, the Vm was derived (Vm (i’) = Vm(i) – Vm(i-

1)) and absolute values were taken. Then, the lowest SD 
segments of 40 ms was calculated, over the derivative Vm 
(Vm'). The new threshold was defined as three times that 
SD. To determine the new QRS offset, in the Vm', the 
algorithm seek the direction from the QRS to the ST 
region, for the highest value of 3 ms segment which 
exceeds the new threshold. This process was repeated in 
successive derivatives orders until RMSrelative exceeds 
the threshold arbitrarily set at 20 (Figure 1). 

 

Figure 1.  QRS complex limits identification before the 
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signal derivation; ▼ QRS-offset identification after each 
derivation;  Definitive QRS-offset identification. 

 
2.5. Statistical analysis 

For ACC and DER methods, the mean Vm QRS 
duration was compared to VIS by paired Student t-test. 
Sensitivity, specificity and predictive values (PV) were 
calculated and compared by χ2 test. QRS offset was 
assessed as a function of different RNLs, and linear 
correlation coefficient calculated. All tests considered the 
significance level α < 0.05. 

 
3. Results 

The mode of the number of times of each Vm signal 
had to be derived to allow QRS offset identification was 
twice (67%) and, for 94% of the signals it was not 
necessary more than three successive derivations. 

The DER method satisfactorily detected QRS complex 
boundaries. In both groups, the mean QRS duration was 
significantly shorter for the DER when compared to ACC 
method (Table 1). 

 
Table 1. QRS complex duration values (Mean ± SD). 

Method Control SMVT 
ACC 105.7 ± 17.9    136.5 ± 21.0   
DER 96.3 ± 12.5* 121.9 ± 15.9* 
VIS 94.7 ± 10.7# 119.8 ± 15.7# 

* p < 0.05 ACC vs. DER;  # p < 0.05 ACC vs. VIS.  
 

The paired Student t-test showed significant 
differences between ACC and VIS in both groups 
(Control: p = 0.004; SMVT: p = 0.044). Between DER 
and VIS, the differences were not significant, (Control: 
p = 0.483; SMVT: p = 0.393). 

The positive PV and negative PV of ACC and DER 
methods were organized in Table 2. Only positive PV 
showed significant differences between ACC and DER 
methods (p = 0.02). 

 
Table 2. Truth tables for both ACC and DER methods. 

ACC method 
Result Control SMVT Total PV (%) 

Negative 13 9 22 59.1 

Positive 5 9 14 64.3 

DER method 
Result Control SMVT Total PV (%) 

Negative 17 12 29 58.6   
Positive 1 6 7 85.7* 
* p < 0.05 ACC vs. DER; PV = predictive value. 
 

Considering the specificity and sensitivity (Table 3), 
only specificity showed significant difference between 

ACC and DER methods (p = 0.0003). 
According to ACC and DER methods, respectively, 

linear correlation coefficients in Control Group were: 
-0.98 (p < 0.05) and -0.32 (p = NS) (Figure 2-a), and in 
SMVT Group were: -0.75 (p < 0.05) and -0.67 (p = NS) 
(Figure 2-b). 
 
Table 3. Specificity and sensitivity for each method. 
 ACC (%) DER (%) 
Specificity 72.2 94.4* 

Sensitivity 50.0 33.3   
* p < 0.05 ACC vs. DER. 

 

 
Figure 2. Mean QRS offset values as function of residual 
noise level for (a) Control and (b) SMVT Group. 
 
4. Discussion 

The novel method for determining the ventricular 
activation duration in the Vm showed to be effective. This 
method would potentially reduce the biases caused by 
statistical processes in QRS delimitation and, 
consequently, positively affect the diagnostic accuracy of 
HRECG exam. To the best of authors' knowledge, no 
previous applications of current method was tested on 
HRECG signals. 

The exact definition of the ventricular activation 
duration is germane for the analysis of HRECG 
parameters. For the sake of an appropriate accuracy, ACC 
method usually requires visual inspection, in addition, to 
confirm QRS limits detected by automated algorithm, 
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which may become a shortcoming in the hands of non-
experienced personal. 

The classical algorithms employed in the ventricular 
activation delineation in the filtered signal relies on 
baseline noise measurements [5], which may lead to 
errors arising from statistical process. Since the noise 
cannot be totally removed, statistical algorithms identify 
the QRS complex boundary in a region where the 
amplitude signal exceeds an arbitrarily pre-stablished 
baseline noise value. The use of the derivative signal to 
determine the QRS complex limits aims to attenuate the 
RNL influence, becoming QRS delimitation less 
dependent on statistical processing, therefore based on 
deterministic properties. 

The method rationale considers the following 
hypotheses: i) The signal is continuously differentiable 
throughout its length; ii) Its terminal region is always 
asymptotic to baseline and always has a maximum (or 
minimum) point before reaching the baseline; iii) the 
signal always has an inflection point immediately after 
the maximum (or minimum) point close to its terminal 
region. Thus, for each derivate, signal has the amplitude 
reduced (and displaced to the right) and noise level 
increased (1.41 times) until both signal amplitude and 
RMS noise becomes similar in amplitudes, thereby 
determining the QRS offset.  

In Control group, the number of correct diagnostics 
increased from 13 (ACC) to 17 (DER). In contrast, the 
SMVT group had a reduction from 9 (ACC) to 6 (DER). 
The positive PV increased due to decrease in the QRS 
complex duration, which affected the estimation of other 
parameters, favoring control cases. Ideally, by adopting a 
method that reduces the mean QRS complex duration, it 
would be appropriate to redefine the criteria of normality, 
which will only be possible in a large cohort study. 

In correlation analysis between mean QRS offset and 
RNL, only DER showed non-significant coefficients in 
both Groups (Figure 2), thus, confirming that DER 
method is less sensitive to RNL as compared to ACC. 

 
5. Conclusion 

DER method tracks QRS limits, increasing both 
specificity and positive predictive value when compared 
to standard ACC method. It was precise and effective in 
identifying ventricular activation boundaries in HRECG 
signals, and showed higher accuracy and less sensitivity 
to residual noise than ACC for QRS offset detection. 
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