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Abstract 

Ablation targeting complex fractionated atrial electro-
grams (CFAE) for treating persistent atrial fibrillation 
(persAF) has shown conflicting results. Differences in 
automated algorithms embedded in NavX (St Jude Medi-
cal) and CARTO (Biosense Webster) could influence 
CFAE target identification for ablation, potentially affect-
ing ablation outcomes. To evaluate this effect, automated 
CFAE classification performed by NavX and CARTO on 
the same bipolar electrograms from 18 persAF patients 
undergoing ablation was compared. Using the default 
thresholds, NavX classified 69±5% of the electrograms as 
CFAEs, while CARTO detected 35±5%% (Cohen’s kappa 
κ≈0.3, P<0.0001). Both primary and complementary met-
rics for each system were optimized to balance CFAE 
detection for both systems. Using revised thresholds 
found from receiver operating characteristic curves, 
NavX classified 45±4%, while CARTO detected 42±5% 
(κ≈0.5, P<0.0001). Our work takes a first step towards 
the optimization of CFAE detection between NavX and 
CARTO by providing revised thresholds to reduce differ-
ences in CFAE classification. This would facilitate direct 
comparisons of persAF CFAE-guided ablation outcome 
guided by NavX or CARTO. 

1. Introduction

Atrial fibrillation (AF) is the most common sustained 
arrhythmia in clinical practice and a leading cause of hos-
pitalization and death [1]. Although radiofrequency cathe-
ter ablation has been consolidated as the most accepted 
percutaneous procedure for AF treatment [1, 2], ablation 
is still suboptimal in patients with long-term or persistent 
atrial fibrillation (persAF) due to insufficient understand-

ing on the mechanistic interaction between relevant atrial 
substrate and the initiation and maintenance of AF. Atrial 
electrograms (AEGs) with fractionated activity are be-
lieved to represent AF substrate [3]. The ablation of atrial 
substrate hosting complex fractionated atrial electrograms 
(CFAEs) has been accepted by many as a useful addition-
al therapy for persAF treatment [3-6]. Disparities in 
CFAE-guided ablation outcomes have, however, cast 
doubt on the efficacy of this approach, with reported suc-
cess rate varying from 14% to 95% [3-6]. Automated 
CFAE detection can be performed by algorithms embed-
ded in commercial 3-dimensional (3D) electroanatomical 
mapping systems [6, 7]. These algorithms incorporate 
CFAE characteristics as initially described by Nademanee 
et al. [3]. Each algorithm, however, considers different 
premises to quantify fractionation in the modified atrial 
substrate. The two commercial systems most frequently 
used in clinical practice are the NavXTM (St. Jude Medi-
cal, St. Paul, Minnesota ) [6] and the CARTO (Biosense 
Webster, Diamond Bar, California) [7]. Those systems 
provide primary metrics to assess CFAE objectively 
[NavX: CFE-Mean; CARTO: Interval Confidence Level 
(ICL)], and complementary metrics to further support the 
electrophysiology procedure [NavX: CFE-StdDev; 
CARTO: Average Complex Interval (ACI), Shortest 
Complex Interval (SCI)]. There are no defined thresholds 
for the complementary metrics to characterize CFAEs.  

Differences in automated algorithms embedded in 
commercial systems might influence CFAE target identi-
fication for ablation, potentially affecting ablation out-
comes [8, 9]. In this study, we report a direct, quantitative 
comparison of automated CFAE classification performed 
by algorithms embedded in NavX and CARTO. We in-
vestigated CFAE areas where both systems agree in order 
to customize their parameters and improve their mutual 
sensitivity and specificity for CFAE classification. 
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2. Methods

2.1. Electrophysiological study 

The study population consisted of 18 persAF patients 
(16 male; mean age 56.1 ± 9.3 years; history of AF 67.2 ± 
45.6 months) referred to our institution for first time cath-
eter ablation [10]. Study approval was obtained from the 
local ethics committee and all procedures were performed 
with full informed consent. 3D left atrial (LA) geometry 
was created using Ensite NavX. Pulmonary vein (PV) 
isolation was performed followed by the creation of linear 
roof lines – defined as contiguous anatomical line – using 
a deflectable, variable loop circular PV mapping catheter 
(Inquiry Optima, St. Jude Medical). External electrical 
cardioversion was used to restore sinus rhythm if this was 
not achieved during the ablation procedure. No additional 
ablation targeting CFAE was performed in this study. 
Sequential point-by-point bipolar AEGs were collected 
from 15 pre-determined atrial regions before and after LA 
ablation for each patient [10]. A total of 797 AEGs were 
recorded from the LA (sampling frequency 1.2 kHz), and 
band-pass filtered within 30–300 Hz.  

2.2. CFAE classification optimization 

Each AEG (2.5-s), with their corresponding CFE-
Mean and CFE-StdDev, were exported from NavX. A 
validated (100% agreement) offline MATLAB algorithm 
was used to compute ICL, ACI and SCI for CFAE identi-
fication according to CARTO criteria. CFE-Mean and 
CFE-StdDev were measured using the standard NavX 
settings (30-120 ms), and ICL, ACI and SCI were meas-
ured using the standard CARTO settings (50-110 ms) [6, 
7]. ICL ≥ 7 was used as the default threshold for CARTO 
CFAE categorization [4].  

CFAE classification was performed on 697 randomly 
sampled AEGs (out of the total 797), first using CFE-
Mean and then ICL. This dataset was used to create re-
ceiver operating characteristic (ROC) curves and hence 
obtain the optimum sensitivity and specificity thresholds 
for both metrics to counterbalance CFAE classification, 
using the counterpart metric as the comparator [11]. More 
specifically, the CFAE classification (CFAE / non-CFAE) 
according to the CFE-Mean ≤ 120 ms [6] was used to 
create a ROC curve by varying ICL. The optimum 
threshold for ICL was identified based on the optimum 
sensitivity and specificity on the ROC curve – defined as 
the point on the curve with the shortest distance to the top 
left corner of the graph. Similarly, the CFAE classifica-
tion (CFAE / non-CFAE) according to the ICL ≥ 7 [4] 
was used to create a ROC curve by varying CFE-Mean. 
The optimum threshold for CFE-Mean was identified 
based on the optimum sensitivity and specificity on the 
ROC curve. Area under the ROC curve (AUROC) and 

the P-value were also calculated. This process was iterat-
ed thirty times, each time with a different dataset of ran-
domly sampled AEGs for ROC curve construction (697 
AEGs), giving a total of thirty ROC curves for ICL and 
thirty for CFE-Mean in order to minimize data sample 
and selection biasing.  

The revised thresholds for both CFE-Mean and ICL 
found in the ROC curves were used to perform a new 
CFAE classification on the thirty sets of 697 randomly 
sampled AEGs. In this ‘new’ classification, an AEG was 
classified as CFAE only if both CFE-Mean and ICL 
agreed with the classification using their revised thresh-
olds. These classifications were used to create ROC 
curves and hence obtain the optimum sensitivity and 
specificity thresholds for the complementary metrics – 
CFE-StdDev, ACI and SCI.  

The revised thresholds found from the ROC curves for 
both NavX – CFE-Mean and CFE-StdDev – and CARTO 
– ICL, ACI and SCI – were validated using the remaining
100 AEGs (thirty sets of 100 AEGs). For each of the thir-
ty datasets, CFAE classification was performed using the 
combined assessment of both primary and complemen-
tary metrics. For instance, an AEG was classified as 
CFAE if it complied with both CFE-Mean and CFE-
StdDev for NavX classification. Similarly, an AEG was 
classified as CFAE if it complied with ICL, ACI and SCI 
for CARTO classification. 

2.2. Statistical analysis 

All continuous normally distributed variables are ex-
pressed as mean ± standard deviation (SD). Nonparamet-
ric paired multiple data were analyzed using the Friedman 
test with Dunn's correction. Nonparametric unpaired data 
were analyzed using the Mann–Whitney test. Categorical 
data were expressed as percentages and analyzed using 
the two-sided Yates-corrected Chi-square test. The level 
of agreement in the CFAE classification performed by the 
two systems was assessed by the Cohen’s kappa (κ) score 
[12]. Kappa score within range 0 ≤ κ< 0.4 suggests mar-
ginal agreement between two metrics; 0.4 ≤ κ ≤ 0.75 good 
agreement and; κ > 0.75 excellent agreement [13]. P≤0.05 
was considered statistically significant. 

3. Results

The comparison between CFE-Mean and ICL for each of 
the 797 AEGs is illustrated in Figure 1, with their respec-
tive default thresholds for CFAE detection highlighted. 
Four quadrants were delimited: two quadrants where ICL 
and CFE-Mean agreed in terms of categorization, i.e., 
whether an AEG is fractionated or not fractionated and 
two quadrants in which they disagreed. Examples of 
AEGs for each of the quadrants are given.  
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Figure 1. Comparison of CFAE classification between 
CFE-Mean and ICL measured for all bipolar AEGs. 

The CFAE classifications performed by the CFE-Mean 
≤ 120 ms suggest that the default threshold for CARTO 
(ICL ≥ 7) provides high specificity but poor sensitivity 
for CFAE detection (Table 1, Figure 2A). The optimum 
threshold found from the ROC curves (ICL ≥ 4) provides 
optimum sensitivity and specificity for CFAE detection 
and classification when using NavX as the comparator. 
The CFAE classifications performed by the ICL ≥ 7 sug-
gest that the default threshold for NavX (CFE-Mean ≤ 
120 ms) provides high sensitivity but poor specificity for 
CFAE detection (Table 1, Figure 2B). Thresholding CFE-
Mean ≤ 84 ms provides optimum sensitivity and specifici-
ty for CFAE detection and classification when using 
CARTO as the comparator. The results from the ROC 
curves suggest that CFE-StdDev ≤ 47 ms, ACI ≤ 82 ms 
and SCI ≤ 58 ms provide optimum sensitivity and speci-
ficity for CFAE detection, when considering the agree-
ment between CFE-Mean and ICL for CFAE classifica-
tion (Table 2, ROC curves not shown).  

Using the default thresholds (NavX: CFE-Mean ≤ 120 
ms; CARTO: ICL ≥ 7) NavX classified 69±5% of the 

AEGs as CFAEs, while CARTO detected 35±5%

Figure 2. ROC curves and threshold customization for 
ICL (A) and CFE-Mean (B).  

(P<0.0001). With the revised thresholds (NavX: CFE-
Mean ≤ 84 ms and CFE-StdDev ≤ 47 ms; CARTO: ICL ≥ 
4, ACI ≤ 82 ms and SCI ≤ 58 ms) NavX classified 
45±4%, while CARTO detected 42±5% (P<0.0001). 
Kappa score between the CFAE categorization performed 
by NavX and CARTO significantly increased (P<0.0001) 
from 0.34±0.07 (marginal agreement, P<0.0001) using 
their default thresholds to 0.45±0.10 (good agreement, 
P<0.0001) with the revised thresholds.  

Figure 3 illustrates the CFAE classification from one 
patient according to NavX (upper maps) and CARTO 
(bottom) using their default (left) and revised (right) 
thresholds. Although the regions marked with CARTO 
revised thresholds are smaller, they are in agreement with 
NavX regional classification using the revised thresholds. 

4. Discussion and conclusions

The true significance of CFAE in the pathophysiology 
of AF remains to be determined. NavX and CARTO have 
been broadly used in automated identification of CFAEs. 
The results presented here, however, support the percep-
tion that CFAE target identification is dependent on the 
system used during the electrophysiologic procedure [8, 
9]. Therefore, each system could identify different atrial 
regions as ablation targets in the same patient, which 
could explain the varying outcomes of success rate in 
CFAE-guided ablation [3-6]. 

Table 1. Threshold optimization for ICL and CFE-Mean. 

AUROC = Area under receiver operating characteristic curve. Values in mean (±SD) from the thirty ROC curves according to the CFAE classification 
by CFE-Mean and ICL. **** P<0.0001. 

Table 2. Threshold optimization for CFE-StdDev, ACI and SCI. 
Thresholds Sensitivity 1-Specificity AUROC P-value

CFE-StdDev ≤ 46.6±0.8 ms 0.905±0.012 0.185±0.008 0.877±0.014 **** 
ACI ≤ 82.2±0.3 ms 0.827±0.010 0.360±0.009 0.759±0.006 **** 
SCI ≤ 58.6±0.4 ms 0.816±0.012 0.300±0.009 0.812±0.005 **** 

Values in mean (± SD) from the thirty ROC curves according to the CFAE classification in agreement by CFE-Mean and ICL. **** P<0.0001. 

Classifier Thresholds Sensitivity 1-Specifivity AUROC P-Value

CFE-Mean ≤ 120 ms 
ICLDefault ≥ 7 0.492±0.008 0.050±0.005 

0.852±0.005 **** 
ICLRevised ≥ 3.8±0.4 0.777±0.022 0.162±0.022 

ICL ≥ 7 
CFE-MeanDefault ≤ 120 ms 0.958±0.005 0.552±0.009 

0.755±0.005 ****
CFE-MeanRevised ≤ 84.1±0.4 ms 0.807±0.010 0.362±0.006 
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Figure 3. CFAE classification in the LA (anterior view) 
performed by NavX (upper) and CARTO (bottom) using 
their default (left) and revised (right) thresholds. 

Consequently, discretion is needed when comparing the 
outcomes in AF ablation incorporating CFAE-targeted 
approaches in different studies. Minimizing the differ-
ences in CFAE classification between NavX and 
CARTO, therefore, would help to improve the current 
understanding of the real significance of CFAE in the 
underlying mechanisms of persAF. We propose custom-
ized thresholds – that could be used immediately in dif-
ferent electrophysiological studies using either NavX or 
CARTO – which optimize the sensitivity and specificity 
of CFAE detection. These thresholds counterbalance the 
differences of automated CFAE classification performed 
by the algorithms embedded in each system and improve 
the ability of each algorithm to identify CFAEs in agree-
ment with both systems. In other words, a CFAE map 
created with CARTO utilising the customized CARTO’s 
thresholds will look similar to the one that would have 
been created with NavX utilising NavX’s customized 
thresholds proposed in this work. This would facilitate 
direct comparison of persAF CFAE ablation outcome 
guided by NavX or CARTO in different studies and 
would allow a common CFAE definition going forward.  

The results found in this work are currently being used 
in an electrophysiologic trial study in our research centre. 
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