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Abstract 

In ambulatory electrocardiography recording, the 
motion artifact can contaminate the signal and disrupt the 
normal functioning of the automatic analysis algorithm. 
The objective of this study is to evaluate an approach for 
measuring the electrode tissue impedance (ETI) variation 
for motion artifacts suppression application. The proposed 
approach injects an additional common mode signal 
though the reference electrode. Motion artifact 
suppression is performed using adaptive filter with the 
reference signal generated by ETI. 

1. Introduction

Ambulatory electrocardiography (AECG) monitoring is 
a portable non-invasive technique to monitor electrical 
activity of the heart by measuring voltage difference 
between electrodes. The relative movement between the 
electrode and the conductive adhesive, and the stretch of 
skin generate MA [1]. MA is the biggest source of noise in 

AECG and can vary skin potential up to several millivolts 
[2]. This contaminates AECG signal and makes it difficult 
to be identified. Filtering MA from AECG is highly 
difficult because they have similar frequency spectra [3]. 
Using basic filter to suppress MA could not efficiently 
remove MA from AECG without distorting original AECG 
signal [4]. Blind source separation techniques were used to 
selectively remove MA from AECG [5], but they suffered 
from high computationally cost [6]. In order to solve this 
problem, adaptive filter (AF) had been widely used [7]. In 
the existing approaches, the reference signal of AF was 
generated by single channel electrode tissue impedance 
(SC-ETI) detection approach [8-10]. To monitor high 
quality SC-ETI and AECG signal simultaneously, SC-ETI 
needs a complex system design to ensure the high input 
impedance of amplifiers. More research is required to find 
a supplementary approach. 

In this paper, we present a multi-channel electrode 
tissue impedance (MC-ETI) detection approach [11] to 
generate the reference signal of AF and use AF to suppress 
MA from AECG. 
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Figure 1. MC-ETI detection approach 
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2. Method

2.1. MC-ETI detection 

In order to reduce the MA in AECG, AF requires a 
reference signal which has high correlation with MA and 
low correlation with AECG. In Fig. 1, MC-ETI detection 
approach can generate the reference signal for the AF 
without any extra sensors. 

Amplifier A2 forces an 1kHz AC voltage though the 
driven right leg circuit and electrode ZLA. There are two 
current paths though the body. One path flows through 
ZLA, ZRA, Zin  to the ground and the other path flows 
through ZLA, ZRA, Zin  to the ground. Zin  is the input 
impedance of instrument amplifier. Actually, RA places 
several millimetres below the right collarbone and LA 
places several millimetres below the left collarbone and LL 
places several millimetres below the left breast. 

When ZLA, ZLL, ZRA vary with the electrode movement, 
the divided voltages vLL, vRA will vary simultaneously. A3 
and A4 amplify these voltages differentially and generate 
two AC voltage vETI_LL, vETI_RA . At the same time, A1 
detects AECG signal vECG . A analog digital convertor 
(ADC) samples these voltages with 80kHz sampling rate 
and transports the data to the person computer (PC). A 
digital lock-in amplifier extracts the DC component from 
vETI_LL, vETI_RA  and calculate the MC-ETI signal by the 
following equations: 

ZETI_LL ≈ ZLL ≈ (Zin − 2ZLA)VETI_LL 2VAC − 2ZLA⁄  
ZETI_RA ≈ ZRA ≈ (Zin − 2ZLA)VETI_RA 2VAC − 2ZLA⁄  

(1) 
We chose commercial silver/silver chloride electrodes 

as LL, LA and RA, and pasted them on the corresponding 
part of the body. We used a Philips® M1603A ECG lead 
set to connect the electrodes to the analog front-end. We 
measured the impedance when we pushed one of the 
electrode of LL and RA. 

2.2. Adaptive filtering 

In noise cancellation applications, the AF updates its 
coefficients w1(k), w2(k)  continuously to minimize the 
error energy of the output signal. Fig. 2 shows the AF to 
suppress MA in AECG, the primary input of the AF is an 
MA contaminated AECG signal Secg(k) = Vecg(k) +
n0(k) . The reference inputs nref_1(k), nref_1(k) are the 
MC-ETI signal related with MA. By iterated operation, AF 
can automatically remove the noise from the contaminated 
signal, leaving a clean AECG signal Eecg(k) [12]. Where 
Vecg(k), n0(k), Yref(k) and Eecg(k) represent the original 
AECG signal, MA signal, filter output and clean AECG 
signal after MA removing, respectively.  

Secg(k)=Vecg(k)+n0(k)
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Figure 2. Adaptive filter to suppress MA in AECG 

3. Results and discussion
3.1. Artifacts and correlated signals 

Ten tests were carried out on five male subjects with 
each of two tests. A single test involved three steps to 
imitate MA in AECG: a motionless wait for 30 seconds 
(the subject sat on a chair), pushing and releasing the 
electrode by hand in turn for 6 times, and a motionless rest 
for 30 seconds before stop. We employed the pushing and 
releasing operations to simulate the force condition in 
motion state. Both of the pushing and releasing lasted 1s, 
with 3s interval between each time. 

Figure 3. AECG (a), and impedance modulus |Z| of ZETI_LL, ZETI_RA (b,c) 
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Fig. 3 shows a section of the AECG and reference 
signals generated by MC-ETI over a period of 50 seconds 
with signals in the motionless and motion state. In the 
motionless state (0-15s and 45-50s), the AECG and MC-
ETI signals are stable, but have no correlation. In the 
motion state (15-45s), these signals are strongly correlated. 

Fig. 4 shows the correlation coefficient between MC-
ETI and the AECG signal over time offset. In motion state, 
the peak of red curve at zero time offset shows the good 
correlation between these two signals. However, there is 
no obvious peak of black curve at zero time offset in the 
motionless state. 

Figure 4. Correlation over time offset 

Table 1 shows the correlation coefficient at zero time 
offset for MC-ETI of the overall ten tests. The correlation 
in motion state is clearly much higher than motionless 
state. This result means MC-ETI can reflect the MA in 
AECG and it is uncorrelated with the AECG signal. Thus 
we can use it as the reference signal of AF to suppress the 
MA in AECG signal.  

Table 1. Correlation of MC-ETI and AECG at zero 
time offset 

Motion Motionless 
Data1 0.479 0.110 
Data2 0.679 0.074 
Data3 0.672 0.149 
Data4 0.653 0.129 
Data5 0.662 0.369 
Data6 0.479 0.382 
Data7 0.679 0.424 
Data8 0.620 0.399 
Data9 0.692 0.224 

Data10 0.616 0.276 
Mean 0.598 0.247 

Standard Deviation 0.079 0.112 

3.2. Motion artifact suppression 

We used a fixed step size LMS AF with 100 coefficients 
to filter MA signal from AECG. Fig. 5 shows a segment of 
signal with ten seconds MA contaminated AECG and the 
MA filtered AECG. 

The black curve shows noticeable baseline fluctuation 
resulted from MA. The red curve shows less fluctuation, as 
AF removed most of MA. 

We used signal to artifact ratio (SAR) of the ten tests to 
evaluate the performance of AF: 

SAR = δecg2 �δecg_MA
2 − δecg2 �� = δecg2 δMA2⁄  (2) 

where δecg
2  is the variance of the MA free AECG signal 

and δMA
2  is the variance of the MA. The former is estimated 

from the first three seconds in MA free segment and the 
latter is estimated by subtracting δecg

2  from the variance 
δecg_MA
2  of the MA contaminated segment of the same test. 

Figure 5. MA contaminated AECG (top), MA filtered 
AECG (bottom) 

In Fig. 6, AF increases the SAR from MA contaminated 
AECG (-15.81 dB) to AF output (19.22 dB), with almost 
35 dB improvement. 

Figure 6. SAR of MA contaminated AECG (A), SAR 
of AF output (B) 
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4. Conclusion

This paper investigated the performance of MC-ETI 
detection approach and its MA suppression performance. 
Results showed that MC-ETI was highly correlated with 
MA in AECG. With MC-ETI generated reference signal, 
the SAR was improved by 35 dB by adaptive filtering. 

Preliminary experiment indicate MC-ETI can be used as 
the reference signal of AF and significantly suppress MA 
in AECG recording. The future work will be the 
performance comparison of SC-ETI and MC-ETI and the 
design of a portable MC-ETI detection system. 
Furthermore, we will evaluate the performance of using 
MC-ETI to detect multi-electrodes tissue impedance. 
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