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Abstract

We present a novel algorithm for classifying true and
false alarms of five life-threatening arrhythmias in in-
tensive care. This algorithm was entered in the Phys-
ioNet/Computing in Cardiology Challenge 2015 Reduc-
ing False Arrhythmia Alarms in the ICU. The algorithm
performs a binary classification of the alarms for a speci-
fied arrhythmia type by combining signal quality informa-
tion and physiological features from multiple sources, such
as electrocardiogram (ECG), photoplethysmogram (PPG),
and arterial blood pressure (ABP). Signals were selected
for feature computation by first assessing the quality for
available signals. Random Forest classifiers were trained
separately for every type of arrhythmia with arrhythmia-
specific features. Hence, the complete algorithm leverages
five different predictive models. Classification sensitivities
of true alarms 75–99 % (average 93 %) on the training set
with cross-validation and 22–100 % (average 90 %) on the
unrevealed test set. Classification specificities on the train-
ing and test set were 76–94% (average 80%) and 75–100%
(average 82%), respectively. The best performance was for
extreme bradycardia, whereas the poorest results were for
ventricular arrhythmias. The results are for the real-time
category when only information prior to the alarm is con-
sidered. The final challenge score was 75.54.

1. Introduction

Cardiac monitor algorithms are intentionally set to have
high sensitivity which, as a consequence, often leads to a
large number of false alarms [1]. An excessive number
of false alarms may compromise patient safety. Nuisance
alarms, which are annoying alarms typically not resulting
an adverse condition, and/or false alarms may cause a de-
lay in reaction time or reduce the probability of caregivers
to respond [2].

The problem of false arrhythmia alarm reduction
has been approached with various strategies including
multi-parameter analysis [3–5] and signal quality indices
(SQIs) [5–7]. A machine learning approach has been pro-
posed to reduce the amount of false ventricular tachycardia
alarms [5].

In this work we present an algorithm that consists of
five arrhythmia-specific alarm classification models for
five life-threatening arrhythmia alarms in the intensive
care unit (ICU). Our classifiers take as input physiolog-
ical features and signal quality features that were ex-
tracted from electrocardiogram (ECG), photoplethysmo-
gram (PPG), and arterial blood pressure (ABP) after se-
lecting the best available signals. Features were designed
and selected separately for every arrhythmia type.

The paper will describe first the data and annotations
followed by a description of heart beat and pulse detection
in Section 2. In Section 3.2, the signal selection for fea-
ture computation is explained. Features are described in
Section 3.3 and the feature selection in Section 3.4. The
classification model is described in Section 3.5. Finally,
results and conclusions are presented in Section 4 and 5,
respectively.

2. Data

The training data of 750 records from bedside monitors
in the ICU was provided by the PhysioNet/Computing in
Cardiology Challenge 2015 [8]. Each record contained an
alarm which was either true or false for one arrhythmia
event. The arrhythmia types were asystole (ASY), extreme
bradycardia (EBR), extreme tachycardia (ETC), ventricu-
lar fibrillation or flutter (VFB), or ventricular tachycardia
(VTA). The test set consisted of 500 records that remained
unrevealed during the challenge.

Each recording contained two leads of ECG, and at least
one pulsatile waveform of either PPG or ABP. In some
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Figure 1. Flowchart of the algorithm

records, both pulsatile waveforms or a respiratory signal
were present. All signals had a sample frequency of 250
Hz and had been filtered with a FIR band-pass filter with a
pass band of 0.05–40 Hz and mains notch filters to remove
noise.

3. Methods

In this section, we will describe the different steps of
the algorithm. The overall flowchart of the algorithm is
presented in Figure 1. Before proceeding to detection of
heart beats and pulses, signals were downsampled to 125
Hz.

3.1. Heart beat and pulse detection

Heart rate (HR) computation was performed by first de-
tecting beats from ECG, ABP, and PPG. Beat detection
from ECG was performed with a low-complexity R-peak
detector [9]. First, a convolution with a single wavelet and
ECG is computed, and then the peaks are searched using
an adaptive threshold. The local noise level around every
peak is estimated by the detector. The R-peak detector was
modified for the current data.

The pulse detection from the ABP and PPG was per-
formed with an open-source ABP pulse detection algo-
rithm, wabp [10]. The algorithm is available from Phys-
ioNet [8].

The beat detection is not necessarily reliable if the sig-
nals are noisy. Therefore, beats detected from different
channels and different signals were compared with each
other. If a beat detected in a single ECG channel was de-
tected simultaneously from another signal source, it was
considered as a matched beat. Delays between ECG and
ABP, and ECG and PPG were compensated in the search
for matching beats.

3.2. Signal selection

As mentioned in Section 2, records contain different
combinations of data. To select the most reliable signals
for feature computation, an assessment of the signal qual-
ity was made after the beat detection. The quality of the
signals was evaluated in a window of 16 seconds before
the alarm. The best ECG channel and either ABP or PPG
were selected for feature computation.

The selection of ECG channel was made based on the
median local noise level around the R-peaks given by the
R-peak detector. When both pulsatile waveforms were
present, ABP was selected if its quality was good. If the
quality of ABP was not sufficiently good, the better signal
between ABP and PPG was selected.

Signal quality for ABP was computed at beat-level by
the signal abnormality index (SAI) algorithm [11]. SAI
extracts several features from the pulses and assigns a flag
’1’ if the feature does not meet the criteria of normality. In
this work, feature flags were transformed to a quality index
between 0 and 1, 1 corresponding to a clean signal.

The quality index of the PPG signal was computed with
an open-source script available for the challenge which
is based on a beat template correlation. The template is
formed by averaging detected beats from the signal.

3.3. Features

Features extracted for the alarm classification can be di-
vided into two categories: signal quality features and phys-
iological features. Physiological features were designed
for every arrhythmia type separately based on the clinical
definition of the arrhythmia in question, whereas the same
signal quality features were computed for every arrhyth-
mia.

The signal quality features included seven ECG fea-
tures, and the quality indices presented in the previous sec-
tion for ABP and PPG. The former included five features
published in previous works [7,12]. Behar et al. [7] discuss
in their work that arrhythmia specific models for ECG sig-
nal quality are necessary. Therefore, several SQIs were
introduced separately instead of having a combined qual-
ity measure. The SQIs included were kurtosis, skewness,
spectral distribution measures of QRS complex and base-
line, and pcaSQI, where pcaSQI is the ratio of the sum of
the five largest eigenvalues associated with the principal
components over the sum of all eigenvalues obtained by
principal component analysis applied to the time aligned
ECG segments in the window. In addition, the median lo-
cal noise level from the R-peak detector, and the percent-
age of detected beats that are detected on the other ECG
channel were included.

The physiological features varied between the differ-
ent arrhythmia types, since every arrhythmia has differ-
ent characteristics. Relying on the definitions of the ar-
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rhythmias [8], the features were designed to represent ei-
ther the HR, intervals between the beats and their vari-
ation, or changes in morphological characteristics of the
beats or pulses. Moreover, blood pressure variations may
occur during ASY, VFB, and VTA, and therefore blood
pressure features were included. The features are listed in
Table 1. The complete number of features per arrhythmia
varied from 12 to 17. All the features presented here were
computed from a window starting 16 seconds before the
alarm.

Table 1. Features for alarm classification

Feature
SQIs - ECG: median local noise level

- ECG: match ratio with other lead
- ECG: kurtosis
- ECG: skewness
- ECG: relative power in the QRS complex
- ECG: relative power in the baseline
- ECG: pcaSQI
- ABP/PPG SQI

ASY - maximum inter-beat interval
- minimum of ABP

EBR - minimum HR of 5 consecutive beats
- maximum number of consecutive beats

with HR under 40 bpm
ETC - maximum HR of 17 consecutive beats

- maximum number of consecutive beats
with HR under 140 bpm

VFB - maximum HR
- standard deviation of normalized inter-beat intervals

in the pulsatile waveform
- standard deviation of normalized pulse amplitudes

in the pulsatile waveform
- minimum ratio of inter-beat interval and pulse

amplitude in the pulsatile waveform
- range of systolic blood pressure
- range of diastolic blood pressure
- range of pulse pressure

VTA - maximum HR
- range of systolic blood pressure
- range of diastolic blood pressure
- range of pulse pressure
- number of ventricular beats

During VFB, a fibrillatory, flutter, or oscillatory wave-
form is exhibited by the heart for at least four seconds [8].
For evaluating regularity of the beats, standard deviation of
inter-beat intervals and amplitudes of the pulses was com-
puted from the pulsatile waveform. Inter-beat intervals and
amplitudes were normalized in the window by subtracting
the mean. Moreover, the minimum ratio of pulse ampli-
tude and succeeding inter-beat interval was included as a
feature, in expectancy of the amplitude to be smaller and
succeeding interval longer, when the heart is not contract-
ing properly.

Ventricular beats in VTA records were detected form-
ing a template of a regular QRS complex in the ECG and
computing cross-correlation between the template and de-

tected beats. The beats that had a poor correlation with the
template QRS were compared to the template in polarity,
amplitude, and width. In addition, the ratio of preceding
and succeeding RR intervals was computed. If at least two
of the characteristics exceeded a predefined thresholds, the
beat was counted as a ventricular beat.

3.4. Feature selection

Evaluating the relevance of the features and selection of
the best feature combinations was made with the help of
a network method that uses a penalized maximum likeli-
hood model [13]. In this method, dependencies between
features are found, and irrelevant or redundant features are
removed. A feature is considered irrelevant when it does
not contain information about the class label. An advan-
tage of the method is that it compares the information in
groups of features and avoids selecting less informative in-
dividual features over more informative groups of features.

3.5. Classification

The classification between true and false alarms was
made with a separate Random Forest classifier for every
arrhythmia. A Random Forest is a classifier that consists
of a large number of tree-structured classifiers and the trees
in the classifier vote for the most popular class. Having
an ensemble of trees improves the classification accuracy
compared to a single decision tree. The Random Forests
are relatively robust to outliers and noise, and do not easily
overfit on the training data when the training set is suffi-
ciently large. [14]

In the training of the classifiers, k-fold cross-validation
was used. k was 10, unless there were less than 10 samples
in a class. Then k was the size of the class.

4. Results

The number of features used for the classification
were reduced to simplify the classification models and to
achieve better performance. Based on the relevancy of
the features, the classification was made with 3–8 fea-
tures depending on the arrhythmia type. For example, the
alarms for ETC were classified based on only three fea-
tures, which were median local noise level, maximum HR
of 17 consecutive beats, and number of consecutive beats
with HR above 140 bpm from ECG.

The classification performance of the algorithm was
evaluated with true positive rate (TPR), true negative rate
(TNR), and a challenge score [8] within the training set and
the test set. Results in the training and test set are listed in
Tables 2 and 3, respectively.
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Table 2. Classification results in the training set

Arrhythmia TPR (%) TNR (%) Score
ASY 85 88 79.60
EBR 96 79 83.05
ETC 99 89 96.38
VFB 75 94 87.29
VTA 84 74 66.34
Average 93 80 77.65

Table 3. Classification results in the test set

Arrhythmia TPR (%) TNR (%) Score
ASY 89 92 87.12
EBR 100 86 91.75
ETC 98 100 91.60
VFB 22 94 55.81
VTA 81 75 65.88
Average 90 82 75.54

5. Conclusion

The algorithm with arrhythmia-specific Random Forest
classifiers combining three to eight features from multi-
parameter data succeeds in significantly reducing the num-
ber of false alarms of life-threatening arrhythmias in the
ICU. On average, 80 % of the false alarms were detected
in the training and 82 % in the test set. The best false
alarm detection rate (100 %) in the test set was achieved
for ETC. The classification was based only on three fea-
tures. Compared to the rhythm based arrhythmias, such as
ASY, EBR, and ETC, false alarms of ventricular arrhyth-
mias were more difficult to classify resulting in a lower
detection rate.

The average detection rate of true alarms was 93 % in
the training and 89 % in the test set. The detection rate was
98 % or higher for ETC and EBR. Since misclassification
of true alarms should be minimal, further modifications are
required for improving the classification of true alarms for
ASY, VFB, and VTA.
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