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Abstract 

There is a need for patient monitoring algorithms to 
reduce alarm fatigue by rejecting clinically irrelevant 
alarms. We developed an algorithm using multimodal 
physiological waveforms (electrocardiogram, blood 
pressure, photoplethysmogram) and noise classifiers to 
improve arrhythmia detection by reducing the incidence 
of false alarms while maintaining a high true alarm rate 
as part of the Physionet Challenge 2015.  Combining 
information from multiple physiological signals our 
algorithm was able to discard 362 of 456 false alarms 
(true negative rate [TNR] of 79%), while correctly 
classifying 268 of the 294 true alarms (true positive rate 
[TPR] of 91%) on the training set,  a score of 73.8. When 
applied to the test set which had 343 false alarms and 157 
true alarms, we achieved a TNR of 81%, TPR of 86% and 
score of 70.2. Our results support the concept that false 
alarms can be reduced in the intensive care unit by 
removing noise segments in signals and combining 
information from multiple physiological signals.  

1. Introduction

 The high number of false alarms in Intensive Care 
Units (ICU) can lead to “alarm fatigue” [1], a top medical 
device hazard [2].  In the ICU, 88.8% of arrhythmia 
alarms have been shown to be false [3]. False alarms not 
only disturb patient rest and pose unnecessary burden on 
the caregiver staff, but also put patients at risk because 
caregivers become desensitized to alarms leading to 
delayed reaction times to clinically relevant events [4, 5]. 
Reducing false arrhythmia alarms is a complex problem 
because multiple factors such as inappropriate user 
settings, patient conditions, noise and motion artifacts, 
and algorithm performance contribute to alarm fatigue 

[3]. However, physiological signals from different 
monitors contain complementary information that is used 
by clinicians to recognize false alarms. Therefore 
information from multiple signals could be used in 
automatic algorithms to reduce false alarms and mitigate 
alarm fatigue. Here we present an algorithm using 
multimodal physiological waveforms (electrocardiogram 
[ECG], blood pressure [BP], and/or photoplethysmogram 
[PPG]) to improve the detection of five life threatening 
arrhythmias (asystole, extreme bradycardia, extreme 
tachycardia, ventricular flutter/fibrillation [VF], and 
ventricular tachycardia [VT]) by reducing the incidence 
of false alarms while maintaining a high true alarm rate as 
part of the Physionet Challenge 2015 (2015 Challenge) 
[6]. 

2. Methods

2.1. Dataset 

 We used 750 records from the 2015 Challenge training 
set for algorithm development and tested on 500 records 
in the 2015 Challenge test set [7]. Each record is at least 
five minutes long and includes ECG, BP and/or PPG 
signals. In each record a bedside monitor detected an 
arrhythmia and triggered an alarm at the end of the 
record, thus the onset of the arrhythmia alarm condition 
must be during the last 10 seconds of the record [6, 7]. 
Expert human annotators reviewed and labeled each of 
these alarms as true or false [7]. The type of alarm 
detected is indicated in each record. Arrhythmias included 
in this dataset were asystole, extreme bradycardia, 
extreme tachycardia, VF, and VTs as defined in Clifford 
et al. [6, 7]. The distribution of alarms and signals used is 
reported in [7]. 
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2.2. Algorithm 

2.2.1. Classifying asystole, extreme bradycardia, 
and extreme tachycardia alarms 

To classify asystole, extreme bradycardia, and extreme 
tachycardia alarms as true or false, we developed an 
algorithm based on global heartbeat annotations 
generated by fusing individual heartbeat detections from 
multiple physiological signals. Briefly, we adapted our 
previously developed “heartbeat fusion algorithm” [8] to 
identify global heartbeats from multiple signals in 2015 
Challenge datasets. We then applied the following 
arrhythmia criteria based on definitions given by Clifford 
et al. [6, 7] to the global heartbeat detections to classify 
whether the alarm associated with the recording was true 
or false: 
• Asystole: No QRS for at least 4 seconds
• Extreme Bradycardia (bradycardia): fewer than 5

heartbeats occur within a period of 6 s
• Extreme Tachycardia (tachycardia): Sum of RR

interval for 17 consecutive heartbeats is less than 8 s

To minimize the effect of spurious heartbeat detections
due to noisy signals, which can increase the false negative 
rate (classifying a true alarm as a false alarm), we 
implemented noise classifiers for each signal type to 
exclude signals containing artifacts. Three reviewers 
independently labeled the last 10 s waveform segment of 
each ECG, BP, and PPG channel of each asystole, 
bradycardia and tachycardia training set records as 
“clean” or “noisy” by viewing the waveform segment 
with marked locations of beat detections. If the reviewer 
considered that the heartbeat detector did not identify 
correct heartbeat locations in the segment, due to noise, it 

was labeled as noisy. A set of clean/noisy reference 
annotations was generated from the segments where both 
reviewers agreed on clean/noisy labeling. Segments that 
reviewers did not agree on were not considered in the 
development or assessment of the noise classifiers. The 
records with agreement between reviewers were then 
divided into two sets randomly: “noise-training” and 
“noise-validation” (Table 1).  A set of signal features 
likely related to noise artifacts (Table 2) were selected 
based on previous experience. 

Using these features, support vector machines (SVM) 
with radial basis function kernels to classify signals as 
“noisy” or “clean” were trained for each signal type using 
libSVM [9]. To evaluate the predictive ability of the 
selected features to correctly classify noisy and clean 
segments, SVMs were trained on the “noise-training” set 
and validated on the “noise-validation” set. The final 
SVMs used in the algorithm were then trained after 
combining both “noise-training” and “noise-validation” 
datasets together to be used in the 2015 Challenge test set 
assessment. The algorithm selects signals which are 
labeled as “clean” by their respective noise classifier to 
feed into our heartbeat fusion algorithm [8] to generate 
global heartbeat detections, upon which the respective 
arrhythmia criteria is then applied to classify whether it is 
a true alarm or a false alarm (Fig. 1).  

Set Reference
Annotation ECG BP PPG

Noise-Training Noisy 102 15 64 
Clean 296 65 94 

Noise-Validation Noisy 47 3 33 
Clean 174 42 56 

Table 1: Number of signals used to train and validate 
noise classifiers.  

Asystole 
Bradycardia 

Noise 
Classifiers 

Heartbeat 
Detectors 

Heartbeat 
Fusion 

Algorithm 
Arrhythmia 

Criteria 

VF Heartbeat Detector Spectrum Analysis 

VT 
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Signal Features (calculated using last 10 s of  
signal) 

ECG 

Standard deviations of points perpendicular to 
the axis on Poincare plot (SD1 and SD2) 
5th to 95th percentile of highpass filtered signal 
Mean of correlation coefficients for 
correlations between inter heart beat interval 
signal values and fitted straight line for the 
interval 
Upper 95th percentile of first derivative 
Root mean square value of unfiltered signal 

BP 

Standard deviations of points perpendicular to 
the axis on Poincare plot (SD1 and SD2) 
Average and maximum of pulsatile signal 
upstroke slope 
Minimum and maximum inter heartbeat 
interval 
Mean systolic pressure and mean diastolic 
pressure 
Number of non-normal heartbeats  
Peak frequency in fast Fourier Transform 
Width to left side of dominant peak 

PPG 

Mean pulsatile signal upstroke slope 
Maximum inter heartbeat interval 
Number of non-normal heartbeats  
Peak frequency in fast Fourier Transform  
Width of dominant frequency peak 
Width to either side of dominant peak 

Table 2: Signal features used to train SVM for noise 
classifiers by signal type. 

2.2.2. Classifying VF alarms 

Based on the VF definition given by Clifford et al.  [6, 
7] to classify VF alarms as true alarms, we checked for
the absence of QRS detections for four seconds or if VF 
filter leakage (ratio between the waveform energy before 
and after sending through a narrow bandstop filter with a 
central frequency equivalent to the mean signal 
frequency) [10] is less than a tuned threshold. After 
studying the distributions of VF filter leakage in VF true 
alarms and VF false alarms in the training set, the 
threshold was determined to be 0.68. 

2.2.3. Classifying VT alarms 

Based on the VT definition given by Clifford et al. [6, 
7] to determine true VT alarms we used a heartbeat
classification method to identify ventricular ectopic 
heartbeats, based on QRS template-matching. Templates 
were formed by extracting a 100 ms window around the 
combined ECG annotations. Afterwards, heartbeat one is 
defined as class 1, then heartbeat two is matched to class 
1 using cross correlation, if they are of the same class, 
class template is updated (median across all members of 

class) otherwise a new class is defined and so forth. After 
defining heartbeat classes, the most frequent heartbeat 
class is labeled as the “normal” group (likely normal 
sinus heartbeats), while the other classes are considered 
“non-normal” (likely of ventricular origin or potentially 
noise artifacts). Noisy signals (e.g., due to electrode 
movements) resulting in spurious heartbeat detection 
usually generate a different template for each false-
heartbeat detection, thus if there is a large number of beat 
classes (greater than six) the signal is considered noisy 
and discarded. If more than five consecutive “non-
normal” heartbeats with a heart rate higher than 90 bpm 
were detected the VT alarm is identified to be a true 
alarm.  

2.3.  Implementation 

Our algorithm was implemented in MATLAB (The 
Mathworks, Inc., Natick, MA)/Octave [11] with some 
components written in C++. 

2.4. Statistical Analysis 

The performance of the algorithm to correctly classify 
the reference true/false alarm annotations was assessed by 
calculating three metrics: true positive rate (TPR = 
number of true alarms classified as true alarms/total 
number of true alarms), true negative rate (TNR = 
number of false alarms classified as false alarms/total 
number of false alarms), and score (score = 
(TP+TN)/(TP+TN+FP+5*FN)) [6, 7].  

3. Results

Performances of noise classifying SVMs are reported 
on Table 3. Table 4 reports overall and by alarm type 
performance of the algorithm on 2015 Challenge training 
and test sets. Our algorithm was able to discard 362 of the 
456 of false alarms, while correctly classifying 268 of the 
294 true alarms in the training set. When applied to the 
test set, our algorithm discarded 277 of 343 false alarms 
while correctly identifying 136 of 157 true alarms. 

Set Reference
Annotation ECG BP PPG

Noise-Training 
Noisy 45 100 95 

Clean 98 98 95 

Noise-Validation 
Noisy 45 67 42 

Clean 96 90 93 
Table 3: Noise classifier performance (% of correctly 
classified signals) in the “noise-training” and “noise-
validation” sets. 
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Asystole 91 86 81.6 78 87 77.8 
Bradycardia 98 44 69.1 74 53 43.8 
Tachycardia 96 78 82.5 96 100 84.2 
VF 100 83 84.8 89 92 85.5 
VT 80 82 67.4 82 81 70.8 
Overall 91 79 73.8 86 81 70.2 
Table 4: Performance of the algorithm. 

4. Discussion

Alarm fatigue is a consequence of high false alarm 
rates in ICU and can result in patient harm. We developed 
an algorithm that classifies arrhythmia alarms as true or 
false using robust heartbeat detections from multiple 
physiological signals and signal quality information.  

Our algorithm manages the presence of noise in signals 
by using noise classifiers for each signal type. However, 
while the noise classifiers are very specific (high 
percentage of clean signals are identified correctly), are 
not very sensitive (percentage of noisy signal identified is 
low). This is due to high variety of noise artifacts present 
on signals. For BP and PPG noise classifiers the 
performance is not consistent across “noise-training” and 
“noise-validation” sets due to the small number of signals 
available to train the SVM.  

Some of the records in the 2015 training set, which are 
from critical patient conditions, are likely mislabeled as 
false alarms while some do not match the definition for 
the given arrhythmia, hence can thus be missed by the 
specific alarm classifier. For example, asystole alarm 
a539l is annotated as a false alarm; however the ECG 
waveform shows signs of the ventricular arrhythmia 
torsade de pointes, initiated with the classical short-long-
short sequence and presence of QRS complexes that 
twists around the isoelectric line, and later on the ECG 
shows sign of VF. Classifying this alarm as false can lead 
to missed patient care causing potential harm. This 
example highlights the need to look before the time of the 
alarm to ensure proper alarm classification, and illustrate 
the difficulties with alarm annotation. 

 Our work suggests that algorithms combining multiple 
physiological signals together with information about 
signal quality can mitigate alarm fatigue in an ICU setting 
by reducing the false alarms rate while maintaining high 
true alarms rates. 
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