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1 Centro de Matemática e Aplicações (CMA), FCT, UNL,Portugal
2 Departamento de Matemática, FCT, UNL
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Abstract

In the context of the 2015 PhysioNet/CinC Challenge we
present an algorithm to detect false arrhythmia alarms in
the Intensive Care Unit(ICU). Our focus is on life threaten-
ing arrythmia alarms: asystole, extreme bradycardia, ex-
treme tachycardia, ventricular tachycardia and ventricular
fibrillation or flutter.

Our method uses simultaneous ECG and pulsatile wave-
forms, photoplethysmogram or arterial blood pressure, to
detect false alarms. QRS detectors produce for each sig-
nal a set of QRS detections that can be used to detect false
alarms. Often the conclusions drawn from the results of
QRS detectors on different signals are contradictory: some
of the signals may be contaminated by noise or simply get
lost for a while. Evaluating the signal quality of each
waveform is necessary to can decide if we can trust the
QRS detections obtained on that waveform. We describe a
method to choose in each case which set of QRS detections
should be used to conclude if the alarm is true or not. A
set of rules is used for each alarm type.

The average score of our best entry in the Challenge was
78.65.

1. Introduction

In the context of the 2015 PhysioNet/CinC Challenge
we developed an algorithm to detect false arrhythmia
alarms in the Intensive Care Unit(ICU). For a descrip-
tion of the challenge and the datasets used we refer to
[1]. Given a record containing two EGC leads and one or
two pulsatile signals, plethysmogram(PLETH) and arterial
blood pressure(ABP), we must decide if an alarm triggered
5 minutes after the beginning of the record should be su-
pressed.

Much effort as been dedicated to the problem of lower-
ing false alarms and detection of signal corruption, see the
introduction of [1] for references and further details.

2. Method Description

2.1. Signal Preprocessing

Each signal in the records was downsampled to 125 Hz.
In some records ECG channels were contaminated by

pacemaker spikes. That noise can produce false QRS de-
tections. We identified pacemaker spikes in the ECG com-
paring each sample with the average of the preceding and
following sample. When a sequence of one or more ECG
samples is associated with a pacemaker spike those values
are replaced by a signal interpolation.

Baseline wander can be a liability, it is thus removed
from all channels. An estimate of the baseline is obtained
by applying a median filter with width of 125 samples, the
same as the sampling frequency. We then correct the wan-
dering by subtracting the baseline estimate from the signal.

NaNs in ECG were replaced by an arbitrary value, -5.

2.2. QRS detection on the different 
channels

In the two ECG channels of each record we always ap-
ply the open source QRS detectors ’gqrs’ [2] and ’eplim-
ited’ [3], authored respectively by George Moody and
Patrick Hamilton. Additionally, in the case of Ventric-
ular fibrillation we also apply our own detector ’fibrilla-
tion peaks’. The ’eplimited’ detector classifies beats as
either Normal or Ventricular. If the alarm is Ventricular
Tachycardia we also use a subset of all eplimited detec-
tions: those identified as ventricular beats. QRS detection
in the pulsatile channels is done exactly in the same way
for PLETH and ABP, we apply the open source detector
’wabp’ [4] after a standard signal scaling. For each de-
tector and each channel the QRS locations (samples) are
grouped in a set of annotations. So for each ECG chan-
nel we get two or three annotation sets(depending on the
alarm type), and for each pulsatile channel we get one set
of annotations.
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Figure 1. Pacemaker spikes removal in record v842s (2nd channel ECG)

3. Choosing the best set of QRS
detections

3.1. Critical time

For each alarm type there is a time segment that we call
critical time. It finishes 5 minutes after the beginning of
the record(alarm time) and lasts 14 seconds for asystole,
10 seconds for bradycardia, 17.3 seconds for tachycardia,
10 seconds for ventricular tachycardia and 14 seconds for
ventricular flutter/fibrilation. The algorithm’s decision is
based on what happens during this time interval.

3.2. Initial Quality Index assigned to each
channel

In this work we have little interest on the evaluation of
the general clinical utility of the signals. Neither we are in-
terested in evaluating the possibility to estimate the QT in-
terval in the ECG nor we give much importance to extract
reliable blood pressure values from ABP signal. Instead,
we aim only to measure the possibility to extract reliable
QRS locations from the different channels. A measure of

signal quality enables us to rank the different signals in one
record: if we assign quality indexes x and y, with x>y, to
channels A and B respectively, we expect that channel A
gives better QRS detections than channel B. Given that we
are dealing with different types of signals like ECG, ABP
and PLETH, deriving such a quality index is a very chal-
lenging task.

Next we describe the signal quality index that we as-
signed to the different types of signals.

3.2.1. ECG

We use the bSQI quality index[5] with the two aforesaid
QRS detectors. We consider the two sets of QRS loca-
tions given by ’gqrs’ and ’eplimited’ contained in the crit-
ical time segment when applied to one ECG channel. The
quality index of that channel is the fraction of matched lo-
cations divided by the total number of QRS locations. This
quality index is thus a number in the zero to one interval.
Zero if there are no matches between both sets and one if
the locations of the two sets perfectly match. When we
match locations, a tolerance of 150 milliseconds is set.
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3.2.2. PLETH and ABP

Signal quality defined in the same way for both types
of signals. We follow the method used in [6] exclusively
for PLETH but we made some simplifications and adapta-
tions. As a first step the signal is scaled in a standard way.
After applying the detector wabp, we call ’wave’ the signal
segment limited by two detections. A wave template was
created using the all record. Next, we computed for each
wave two coefficients. The first is the simple correlation
coefficient between the template and the present wave, the
second is dynamic time warping distance between the tem-
plate and the present wave (see [7]). This two coefficients
are then averaged and a wave quality index is assigned to
each wave. Finally, the quality index of a pulsatile channel
is the average wave quality indexes during the critical time
segment.

3.3. Final trust assignment to each set of
annotations

Fusion of annotations from different detectors and chan-
nels was an option, tough we don’t rely on any annota-
tion fusion, except for the case when annotations perfectly
match during critical time. The initial trust we assign to
each set of annotations is preset as the quality index of the
corresponding channel. When two sets of QRS annota-
tions from different channels coincide in the critical time
the signal quality from the two channels add to increase the
trust on both annotation sets. For example, if one set of an-
notations from some ECG channel completely matches the
annotations from the PLETH, the trust we assign to those
annotations will be the sum of the quality indexes of that
ECG channel and the PLETH.

4. A set of rules for each alarm type

Given a record associated with a particular alarm type
and each set of annotations a conclusion, or result, is im-
plicit about whether the alarm should be supressed or not.
For example, if the alarm is asystole and there is an inter-
val of more than 4 seconds between consecutive QRS de-
tections in critical time we conclude that it is a true alarm.
Given the different sets of annotations associated to the dif-
ferent channels and different detectors, contradictory con-
clusions may occur and a decision as to be taken. For each
alarm type we applied a set of rules that uses the result and
the trust assign to each set of detections to arrive to a final
conclusion about the supression of the alarm.

For all alarm types we use a constant called trust thresh-
old. For asystole and ventricular tachycardia the value of
trust threshold is 0.82 and for the other alarm types the
value is 0.9.

Next we describe the different sets of rules we used.

Asystole, Bradycardia and Tachycardia: If the highest trust
value is smaller than the trust threshold, we do not take
into account the results of the different annotations, and
we also don’t suppress the alarm. Otherwise, we take the
result of the annotations set with the best trust index if it
is comes from a pulsatile channel. In the case the highest
trust value is above the trust threshold but it is associated
with an ECG channel we only suppress the alarm if the an-
notation of both detectors on that channel indicate it is a
false alarm.
Ventricular Tachycardia: If the trust of the best annota-
tion set is above the trust threshold and the result is neg-
ative(false alarm) then we conclude that the alarm should
be suppressed. If the result for that set of annotations is
positive, the alarm should be suppressed only if the re-
sults of the two sets of annotations that use only ventric-
ular beats are negative. If the trust of the best annotation
set is smaller than the trust threshold, the alarm should not
be suppressed.
Ventricular fibrillation or flutter: If the highest trust value
is smaller than the trust threshold, we suppress the alarm if
the detector ’fibrilation peaks’ gives negative result on both
ECG channels. Otherwise, we do not suppress the alarm.
In the case the highest trust value is above the trust thresh-
old, and the annotation set is from a pulsatile channel, the
final result is the one of that annotation set. If the highest
trust value is above the trust threshold, and the annotation
set is from an ECG channel, we suppress the alarm only
if both gqrs and eplimited give a negative result on that
channel.

5. Results

The global results of the Top-scoring entries(Plešinger
et al.) in the Unofficial Phase are given in table 1. The
score function is given by the formula

score =
TP + TN

TP + TN + FP + 5 ∗ FN

where TP and FP are algorithm true and false positives re-
spectively and TN and FN are algorithm true and false neg-
atives. We refer to [1] for further details on the challenge
competition namely for ’real time’ and ’retrospective’ cat-
egories. Our algorithm did not make any distinction be-
tween the records of those two categories.

Table 1. Top-scoring entry in the unofficial phase, global
result

Real-time Retrospective
Score 76.6 78.5

The results of our top-scoring entry in the Unofficial
Phase are given in table 2. TPR means true positive rate,
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algorithm correct positives divided by all algorithm pos-
itive answers. TNR means true negative rate, algorithm
correct negative answers divided by all algorithm negative
answers.

Table 2. Results of our Top-scoring entry in the unofficial
phase

Alarm TPR TNR Score
Asystole 72% 94% 81.14
Bradycardia 90% 78% 70.80
Tachycardia 90% 60% 63.23
Ventricular Flutter Fib 44% 76% 52.56
Ventricular Tachycardia 50% 70% 46.67

Real Time 75% 76% 57.93
Retrospective 76% 81% 60.0

In the official phase we made a clear improvement as it
is shown by the results of our best-scoring entry(table 3).

Table 3. Results of our Top-scoring entry in the official
phase

Alarm TPR TNR Score
Asystole 78% 94% 83.63
Bradycardia 95% 66% 71.43
Tachycardia 100% 80% 99.10
Ventricular Flutter Fib 89% 96% 88.71
Ventricular Tachycardia 69% 95% 71.67

Real Time 89% 91% 79.02
Retrospective 88% 92% 78.28

5.1. Discussion

We described an algorithm to suppress false arrhythmia
alarms in the ICU. Improvements should be made namely
to avoid the suppression of real alarms. The public avail-
ability of medical records containing ECG, PLETH, ABP
and other signals is fundamental for the development of al-
gorithms to reduce the number of false alarms in the ICU.
Physionet as been doing an important work in that direc-
tion [8, 9] and this Challenge provided a set of data anno-
tated by specialist that is invaluable. In the case of ventric-
ular tachycardia there was an important lack of publicly
ECG signals containing this type episode and annotated
by specialists. That problem is mitigated with the training
data of this challenge. The beat classifier we used, eplim-
ited, could be tuned to improve the detection of ventricular
beats in the context of ventricular tachycardia, that would

reduce the rate of false negatives which was not very sig-
nificant in test records of this alarm type but was higher in
the training set.
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