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Abstract 

This study investigates the potential of ECG 
morphological feature set for person identification. The 
measurements are done over 145 pairs of ECG 
recordings from healthy subjects, acquired 5 years apart. 
Time, amplitude, area and slope descriptors of the QRS-T 
pattern are analyzed in 4 ECG leads, forming quasi-
orthogonal lead system (II&III, V1, V5). The inter-subject 
variation, the difference of means in 1st vs. 2nd recording 
measurements, as well as the cross-correlation between 
features are estimated. Thus, 2 area and 4 amplitude 
descriptors of the QRS complex are highlighted. The 
population heterogeneity in the space of the selected 
features is verified via Factor analysis by Principal 
components extraction method. It confirms the 
orthogonality of the 6 features (each of them has 
significant factor loading for a particular factor). The 
analysis shows that the first 3 factors have eigenvalues 
higher than 1, both for the measurements in the 1st and 
the 2nd ECG recording and they accumulate respectively 
68% and 64 % of the total data variation, which is a sign 
for their person identification potential. 

1. Introduction

Nowadays, research on automatic person identification 
is focused on internal body physiological biometric 
characteristics, robust to hacker attacks and falsification. 
The analysis of the electrocardiogram (ECG) in this 
respect started about a decade ago, applying either 
methods that use measurements after detection of fiducial 
points or analysis of the overall ECG morphology. 

The methods relying on fiducial based approach report: 
identification based on 12 uncorrelated diagnostic 
features of P-QRS-T amplitudes and durations, processed 
by Principle Component analysis score plots, achieved 
100% identification accuracy (IDA) over a database with 
20 subjects [1]; identification employing 15 P-QRS-T 
temporal features, fed to discriminant functions, 
providing IDA between 97% and 100% over 29 subjects 

under various stress conditions [2]; identification via 
fiducial based temporal and amplitude measurements 
combined with features that capture the heartbeat patterns 
[3]. The latter combined approach provides 100% IDA 
when tested over 31 healthy subjects: 18 with a single 
ECG record and 13 with more than one ECG record.  

Great part of the fiducial independent approaches for 
identification is based on autocorrelation (AC). The 
subsequent processing with discrete cosine transform 
results in 100% IDA over a database with 14 subjects [4]; 
application of discriminant analysis [5] provides 96.2% 
IDA for 48 patients with single ECG recording and 13 
healthy subjects with more than one ECG record; 
assessment of the maximal correlation coefficient of a 
single-lead assures 91.4% [6] and 85.7% [7] over 
databases with 11 subjects and 14 subjects, respectively, 
while 12-lead ECG assures 100% IDA over the database 
with 11 subjects [6]. Another method calculates the two-
dimensional heart vector formed by the limb ECG leads 
and its first and second derivatives achieves 98.1% IDA 
by a distance based approach over 74 subjects [8]. 
Processing of a normalized QRS complex via Multilyer 
perceptron provides 96.1% IDA over a database with 30 
healthy subjects [9]. ECG decomposition in a number of 
intrinsic mode functions combined with Welch spectral 
analysis for heartbeat features extraction, followed by a 
K-Nearest Neighbors classifier leads to 95.6% IDA over 
108 subjects having one ECG record with ST-segment 
changes and 12 healthy subjects with more than one ECG 
record [10].  

Majority of the cited methods are tested with small-
sized ECG databases [1,2,4,7,9] or track intra-subject 
changes of ECG characteristics measured in very short 
distanced time intervals [2,3,5,9,10]. This might bias the 
reported high identification/verification accuracy from the 
real case scenario. 

The aim of this study is to investigate ECG inter-
individual differences observed in a set of morphological 
features in order to assess their potential for person 
identification. The study is conducted on a large ECG 
dataset, containing two different ECG recordings per 
subject acquired 5 years apart. 
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2. ECG database

The ECG signals used in this study are taken from a 
computerized ECG-ILSA database, collected for the 
Italian Longitudinal Study on Aging project [11]. The 
ECGs have been collected from individuals aged from 65 
to 84 years. Each recording is with duration of 10s and 
includes the standard 12 leads, sampled at 500 Hz. The 
database contains 901 patients recorded both in the first 
phase (T1) and in the second phase (T2=T1+5 years). A 
set of 145 individuals without cardiac diseases has been 
selected for analysis in this study.  

3. Method

Four ECG leads, forming quasi-orthogonal lead system 
(II&III,V1,V5) [12] are processed as follows: 
1) Detection of QRS complexes in a combined ECG lead

[13], heartbeat classification [14], calculation of mean 
RR interval between predominant beats; 

2) Extraction (by best-fit correlation) of an averaged
QRS-T pattern of the predominant beats for each of 
the 4 leads. Interval of 0.35*RR before and 0.55*RR 
after the detected fiducial points is considered;  

3) QRS-T delineation in each of the four leads [15];
4) Calculation of 15 morphological pattern features per

lead (see figure 1), as follows:
- 12 features describing the QRS morphology that

have previously been approved to provide adequate 
heartbeat comparison and classification [13]: QRS-
width (Width); amplitudes (Ma, Mi) and offsets 
(Ima, Imi) of maximal positive and negative peaks; 
slope from QRS-onset to first peak (S1); slope from 
first to second peak (S2); QRS positive (ArP), 
negative (ArN) and total area (Ar=ArP+ArN); sum 
of the absolute QRS velocities values (Av); number 
of samples crossing 70% of the maximal peak 
amplitude (No); 

- 3 features describing the T-wave – width (TWidth), 
amplitude (Tamp), peak-to-end interval (Tp_Tend); 

5) Calculation of QT/RR ratio, common for the four
leads. It is reported to exhibit high intra-subject 
stability and essential inter-subject variability [16]. 

Figure 1. Graphical representation of the morphological 
features calculated for the averaged delineated QRS-T 
pattern: a) slopes; b) amplitudes, areas; c) time intervals. 

Aiming to select feature constellation appropriate for 
the identification task, we do the following: 
1) Calculate coefficient of variation for each feature (x):

 CV(x) = 100*( Standart Deviation(x) / Mean(x)), 

to score its potential for providing large distance 
between samples in the feature space. This is 
important for the person identification task where 
enhanced inter-individual differences are beneficial. 

2) Apply one-sided paired t-test over the scored features
to verify that their mean values calculated for the 
measurements in T1/T2 do not differ significantly.  

3) Set additional requirement for lack of correlation
between features, thus minimizing the redundancy of 
information in the feature constellation. 

4) Apply Factor analysis by Principal components
extraction method on the outstanding uncorrelated 
features to verify the population heterogeneity. 

4. Results and discussion

Analyzing the designed feature space (15x4+1=61 
features), we have highlighted two of the features that are 
relevant to heterogeneous population (CV>30%) in both 
T1 and T2: Ar_II (CV(T1)=44%, CV(T2)=50%) and 
Ar_III (CV(T1)=76%, CV(T2)=82%). The feature 
constellation is complemented by four additional features 
which satisfy the conditions for insignificant differences 
between mean values in T1 and T2, i.e. Mi_II 
(126.2±14.9 vs. 128.2±22.1, p=0.183), Mi_III (124.2±9.2 
vs. 123.8±9.5, p=0.358), Mi_V1 (124.8±3.7 vs. 
125.7±7.4, p=0.096), Mi_V5 (130.6±13.7 vs. 132.2±13.3, 
p=0.157), and show the minimal correlations to each 
other (Table 1a,b).  

Table 1a. Correlations within the selected feature 
constellation observed for the measurements in T1.  
Var Mi_II Ar_II Mi_III Ar_III 

 

Mi_V1
 

Mi_V5
Mi_II  1.00 -0.07  0.30  0.06  0.13  0.26 
Ar_II -0.07  1.00 -0.02  0.39 -0.13 -0.21 
Mi_III  0.30 -0.02  1.00  0.05 -0.04  0.08 
Ar_III  0.06  0.39  0.05  1.00 -0.23  0.18 
Mi_V1  0.13 -0.13 -0.04 -0.23  1.00 -0.11 
Mi_V5  0.26 -0.21  0.08  0.18 -0.11  1.00 

Table 1b. Correlations within the selected feature 
constellation observed for the measurements in T2. 
Var Mi_II Ar_II Mi_III Ar_III 

 

Mi_V1
 

Mi_V5
Mi_II  1.00  0.14  0.04  0.09 -0.05  0.21
Ar_II  0.14  1.00 -0.01  0.50  0.02 -0.08
Mi_III  0.04 -0.01  1.00  0.08 -0.06 -0.02
Ar_III  0.09  0.50  0.08  1.00  0.10  0.11
Mi_V1 -0.05  0.02 -0.06  0.10  1.00 -0.02
Mi_V5  0.21 -0.08 -0.02  0.11 -0.02  1.00

a) b) c) 
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The features’ orthogonality is also confirmed by the 
fact that each feature from the constellation has 
significant factor loading for a particular factor (see 
Tables 2a,b). The first 3 factors (F1, F2, F3) have 
eigenvalues higher than 1, both for the measurements in 
T1 and T2 and they accumulate 68% and 64% of the total 
data variation, respectively (Tables 3a,b) that is a sign for 
their high potential for person identification.  
 
Table 2a. Factor loadings (Varimax normalized) for the 
selected 6 features, measured in T1. 

 
Var 

Factor 
F1 

 

F2 
 

F3 
 

F4 
 

F5 
 

F6 
Mi_II 

 

 0.03  0.15  0.13 -0.07  0.98  0.03
Ar_II 

 

-0.97 -0.01 -0.12  0.06 -0.03  0.21
Mi_III 

 

 0.01  0.99  0.03  0.02  0.15  0.02
Ar_III 

 

-0.21  0.02  0.10  0.11  0.03  0.97
Mi_V1 

 

 0.05 -0.02 -0.06 -0.99  0.07 -0.11
Mi_V5 

 

 0.12  0.03  0.98  0.06  0.13  0.10

Table 2b. Factor loadings (Varimax normalized) for the 
selected 6 features, measured in T2. 

 
Var 

Factor 
F1 

 

F2 
 

F3 
 

F4 
 

F5 
 

F6 
Mi_II 

 

 0.07  0.11 -0.02  0.03  0.99  0.03
Ar_II 

 

 0.96 -0.05  0.01 -0.00  0.07  0.26
Mi_III 

 

-0.01 -0.01 -1.00  0.03  0.02  0.04
Ar_III 

 

 0.26  0.07 -0.05 -0.06  0.04  0.96
Mi_V1 

 

 0.00 -0.01  0.03 -1.00 -0.03  0.05
Mi_V5 

 

-0.05  0.99  0.01  0.01  0.11  0.06

Table 3a. Eigenvalues and cumulative variance of F1-F6 
for the measurements in T1. 

Factor 
Eigen 
value 

 

Total  
Variance 

 

Cumulative 
eigenvalue 

 

Cumulative 
variance 

 

F1 
 

1.53 25.45 % 1.53 25.45 %
F2 

 

1.50 24.98 % 3.03 50.44 %
F3 

 

1.06 17.60 % 4.08 68.03 %
F4 

 

0.87 14.58 % 4.96 82.61 %
F5 

 

0.58   9.72 % 5.54 92.33 %
F6 

 

0.46   7.67 % 6.00 100.0 %

Table 3b. Eigenvalues and cumulative variance of F1-F6 
for the measurements in T2. 

Factor 
Eigen 
value 

 

Total  
Variance 

 

Cumulative 
eigenvalue 

 

Cumulative 
variance 

 

F1 
 

1.58 26.29 % 1.58 26.29 %
F2 

 

1.20 19.94 % 2.77 46.23 %
F3 

 

1.05 17.58 % 3.83 63.81 %
F4 

 

0.94 15.73 % 4.77 79.53 %
F5 

 

0.79 13.22 % 5.57 92.75 %
F6 

 

0.43   7.25 % 6.00 100.0 %

We aim at clusterization of the population data 
(separately for T1 and T2) in order to find coincidence 
between the individual feature constellation for each 
subject in the feature space of T1 and T2. For that 
purpose, we have studied the data variation over the 
population in T1 and T2, using the projections of the 
selected six features in the planes formed by the first 3 
factors (F1xF2, F1xF3, F2xF3).  The examples in Figures 
2a,b illustrate the relative proximity between the feature 
projections for T1 and T2 in the factor plane F1xF2. 

Aiming to demonstrate the clusterization of the 
population data, we have analyzed the feature projections 
in the three factor planes (F1xF2, F1xF3, F2xF3) and we 
have selected the three features that are far apart – Ar_II, 
Mi_V1, Mi_V5. Figures 3a,b illustrate the data 
distribution in the 3D-space of Ar_II, Mi_V1, Mi_V5 for 
T1, T2, respectively. The similarity between the spatial 
distribution of the data is evident even in this case of 
reduced number of features applied for clusterization. 

 

 
                                                                                                                     

Figure 2a. Projection of the features measured in T1 on 
the factor-plane (F1xF2). 

 

  
Figure 2b. Projection of the features measured in T2 on 
the factor-plane (F1xF2). 
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Figure 3a. 3D scatterplot of features Mi_V5 vs. Mi_V1 
vs. Ar_II, measured in T1. 
 

 
Figure 3b. 3D scatterplot of features Mi_V5 vs. Mi_V1 
vs. Ar_II, measured in T2. 
 

As a result from the performed analyses, we could 
speculate that the QRS morphological features are the 
most adequate for person identification. However, further 
investigations are needed over the T-wave features and 
QT/RR ratio in order to use their potential to improve the 
clusterization of the population in T1 and T2. 

 
5. Conclusions 

The presented study has the characteristics of an 
exploratory data analysis. The achieved results, even 
obtained over a reduced feature set, show that it is 
advisable to focus the investigations towards appropriate 
clusterization of the data measured in T1 and T2.  This 
would be followed by testing the potential of the designed 
clusters to match a subject in T1 and T2. 
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