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Abstract

A simulator of the baroreflex loop is implemented as a
distributed system, including independent functional units
with each of them running without synchronisation and in
real-time. Individual components are build from extended
equations of the well established Seidel-Herzel-model.

The system includes five small computers representing
five independent sub-models. Each component has a com-
puter mouse connected that allow for real-time manipula-
tion of simulation parameters in the respective part of the
model. This way, numerical values of variables, such as
neurotransmitter concentrations or breathing frequency,
can easily be altered by turning the associated adjusting
wheel.

Virtual administration of drug substances and virtual
disease simulations are performed and show that the asyn-
chronous simulation is robust enough to be used as an in-
tuitive model to study heart rate dynamics.

1. Introduction

The baroreflex loop is a well researched field of physi-
ology, but reliable prognosis and finding truly objective di-
agnostic criteria for baroreflex-related heart diseases is still
difficult.

The required level of objectivity can probably only be
achieved with the help of mathematical models. There are
already numerous examples of such models in literature;
however, to use them for diagnosis we must enable physi-
cians to understand and use these models. Most existing
models only allow to set parameters before execution while
not providing any live feedback of the stimulus responses.
This is not sufficient in order to analyse the dynamic be-
haviour of a living system.

Therefore we use extended equations of the well estab-
lished Seidel-Herzel model of the baroreflex loop to build a
simulator that runs in real time, and allows live monitoring
and manipulation of physiological parameters.

2. Seidel-Herzel Model

The model was first published by Seidel and Herzel in
1995 [1] with the main purpose of analyzing heart rate
variability (HRV). It was later extended by Kotani et.al.
including a noise model and an additional feedback loop
that enables the model to display cardiorespiratory syn-
chronization. We chose this model for our research be-
cause, although it is rather compact, it is in good agree-
ment with measured data regarding heart rate characteris-
tics including respiratory sinus arrhythmia (RSA), Mayer
waves, bifurcations and the simulation of diseases such as
baroreceptor hypersensitivity, congestive heart failure and
primary autonomic failure [1–4].

In this paper we use an extended version of the model
published in 2005 by Kotani et.al. It includes the function
of baroreceptors, the lung, the autonomic nervous system,
the sinus node, AV node, the heart itself and the Wind-
kessel arteries. The baroreceptor model assumes that there
is a constant minimal pressure at which the baroreceptors
start firing. The firing rate increases both with the static
blood pressure level as well as with the dynamic increase
in blood pressure. The baroreceptor signal is then passed
on to the autonomic nervous system (ANS) and to the lung.
The lung model assumes a constant breathing rate that is
only modulated by the baroreceptor signal during expira-
tion, as experimental results have shown that high barore-
ceptor activity can lengthen the period of expiration. As
an additional influence, we added a term for the mechan-
ical respiratory influence on the contractility. The ANS
is effectively modeled as a black box. Seidel and Herzel
assume a linear connection between the baroreceptor sig-
nal and the ANS that decreases sympathetic (SNS) activity
and increases parasympathetic (PNS) activity and a second
linear connection to the respiratory neurons that modulates
the SNS and PNS response with a simple sine wave. The
ANS is the second part of the model where Kotani et.al.
include a noise term that changes on a beat-to-beat inter-
val. The transmitter kinetics for the SNS neurotransmit-
ter Norepinephrine are modeled explicitly as two different
concentrations at the sinus node (as neurotransmitter) and
in the vascular system (as hormone) while the faster kinet-

973ISSN 2325-8861 Computing in Cardiology 2015; 42:973-976.



ics of the PNS neurotransmitter Acetylcholine are mod-
eled by a delay of the raw neural signal. Both the concen-
tration of Norepinephrine and the delayed PNS signal are
modulated with a saturation term before they reach the si-
nus node, which is described as a simple integrate-and-fire
model. In addition to the sinus node, we also modeled the
function of the AV node by simply issuing a heartbeat and
resetting the sinus phase prematurely, when no sinus signal
has been received for 1.7 seconds. The strength of the con-
traction depends both on the time that has passed since the
last contraction (via the Frank-Starling mechanism) and on
the Norepinephrine concentrations that increase both the
contractility and the venous return to the heart. After a
fixed time period of 0.125 seconds has passed, the heart
model switches from the systole to the diastole, where the
decrease of blood pressure is determined by the vascular
concentration of Norepinephrine. For a more detailed dis-
cussion of the formulas involved, the reader is referred to
Kotani 2005 [4].

3. Distributed simulation and analysis

In order to implement the extended model of the barore-
flex a system with five separated computers is set up. Each
computer solves the differential equations belonging to one
component of the baroreflex model. The components are
the heart (including sinus node and Windkessel arteries),
sympathicus, parasympathicus, baroreceptors, and lung.
The computers are five Raspberry Pis, which are fully
functional small computers. For communication, the com-
puters are attached to a local area network (LAN). Each
computer runs multiple threads to both calculate new val-
ues and send and receive values from other computers.

Except of the explicit communication the computers are
independent. This setup leads to an asynchronous be-
haviour: Components are not waiting for others to run in
the same step. The distributed simulation is even able to
run with one or more parts missing.

The asynchronous setup and network communication
has side effects on the behaviour. Calculated values can
be omitted while calculating new values, or the new values
can be calculated before the previous are sent. This intro-
duces an additional noise into the system, also present in
real living organisms.

A standard computer mouse is attached to each com-
puter. The scroll wheel allows to manipulate parameters
of the components simulated on the respective computer
while the model is running. Modifiable parameters include
concentrations of neurotransmitters, PNS or SNS influence
breathing frequency as well as the hypertension factor.

With help of these manipulators different conditions,
such as diseases or influence of medication, can be sim-
ulated easily. The behaviour under altered conditions can
immediately be observed in the plots.

Multiple lights are connected to the sinus node computer
to display each beat. All components of the model are at-
tached to a board for display. Figure 1 shows the board
from the front view.

For logging purpose an additional part of the system is
set up on a laptop. This optional passive unit only receives
values.

Figure 1. The board on which the model is set up.

Our analysis includes long-range correlations in the time
series of the heart beat intervals. They are calculated by es-
timating local Hurst exponents by means of a sliding win-
dow algorithm. The size of the window is set to 101 heart
beats. For each window R/S analysis is performed and the
resulting Hurst exponent is assigned to the 3 heart beats in
the centre of each window [5, 6].

The multifractal properties of the series of heart beat in-
tervals are evaluated by calculating the scaling exponents
τ(q) from the partition function Zq(a) ∼ aτ(q) [7, 8]. The
partition function is derived as the sum of the qth power of
the maxima of the modulus of the wavelet decomposition
at scale a. The third derivative of the Gaussian is used as
analysing wavelet. A range of −3 < q < 3 is used for the
multifractal order. Multifractal spectra are obtained with
a scaling 0.5 < log10 a < 2.5. Fractal dimensions D(h)
and singularity spectra, displaying the fractal dimensions
of parts of the dataset with a local Hurst exponent of h, are
obtained by Legendre transform D(h) = qh− τ(q) [9].
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4. Results

Baseline: Figure 2 displays the baseline behaviour of the
model. Beats per minute (BPM) are shown in the upper
right. The blood pressure follows the BPM. The influence
of SNS and PNS are shown in the lower plots.

Figure 2. Baseline plots for blood pressure, beats per
minute and influence of parasympathicus and sympathicus.

In order to evaluate the characteristics of the distributed
simulation, we performed multifractional analysis of the
baseline heart rate as well as conditions that simulate medi-
cation.

Multifractal spectrum and singularity spectrum of the
baseline simulation are displayed in figure 3 (a) and (b) re-
spectively as black solid circles. The multifractal spectrum
shows a change of slope of τ(q) and the singularity spec-
trum shows a dependency of the fractal dimension D(h)
from the local Hurst exponent h, similar to experimental
data from healthy subjects [10, 11].
Virtual medication: Administration of a betablocker,
such as metoprolol, that suppresses SNS signals leads to
a weak decrease in multifractal complexity of heart rate
dynamics [10]. In order to simulate administration of a
betablocker we turned the mouse-wheel of the sympathi-
cus computer until the SNS gain has decreased to 80%
of the baseline value. After a waiting time of 100 s
we recorded heart beat intervals and analysed multifrac-
tal properties. The results are displayed as blue diamonds
in figure 3 (a) and (b). The model shows a slight decrease
in the curvature of the τ(q)-spectrum and a narrowing of
the D(h)-spectrum.

In a similar way virtual administration of atropine, as
an example for a PNS blocking substance, is simulated by
decreasing the gain of the parasympathicus to 80%. The
results are displayed as red empty circles in figure 3. The
almost linear curve of τ(q) and the reduced singularity
spectrum D(h) suggest almost monofractal signals. Both,
the responses to blockade of SNS and to PNS activity are
consistent with experimental data and indicate a realistic
behaviour of the distributed simulation [10].
Virtual disease: Congestive heart failure (CHF) and pri-
mary autonomic failure (PAF) involve changes in long-

(a) (b)

Figure 3. Response of the model to SNS and PNS block-
ade. (a) Multifractal spectra [τ(q)] and (b) singularity
spectra [D(h)] that display the fractal dimension of pat-
terns of heartbeat interval time series with the respec-
tive local Hurst exponents h. Black solid circles denote
the baseline experiment simulated with default parameters.
Red empty circles show the results for a 20% blocking of
the PNS influence by virtual administration of atropine.
Blue diamonds show the results for a 20% blocking of the
SNS influence by virtual administration of metoprolol

range scaling properties of heart rate [12].
In CHF PNS activity is decreased and SNS activity is in-

creased. According to Kotani et al. CHF can be simulated
by decreasing the gain parameters for PNS influence and
increasing the gain for cardiac and vascular branches of
the SNS activity [4]. For disease simulation with the dis-
tributed simulator, we ran the model in baseline condition
for some minutes before PNS gain is decreased to 60% and
SNS gain is increased to 120% by turning the respective
mouse wheels. The resulting heart rate is shown in figure
4 (b). Both the decrease of average heart beat interval and
the decrease of multifractality are consistent with Konati’s
results and with experimental data from CHF patients.

In PAF both, PNS activity and SNS activity are de-
creased due to neuronal degeneration. We performed the
simulation in a similar way as for CHF by reducing PNS
influence to 80% and SNS influence to 50%. Results are
displayed in figure 4 (c). As reported by Kotani for his
model [4], the multifractality is only slightly reduced while
heart beat intervals and variability of heart beat intervals
are significantly reduced.

5. Discussion

The distributed simulation seems to be robust and dis-
plays similar properties as conventional implementations.
In contrast to these, our model features asynchronous
communication between organs leading to a more realis-
tic model. Additionally the different organs become ex-
changeable modules. Although we currently use only one
implementation for each organ, the setup allows to switch
between different versions, which include or exclude cer-
tain physiological effects. This is possible during run-time.
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(a)

(b)

(c)

Figure 4. Heartbeat intervals of simulated diseases with
the local Hurst exponent as background colour. The local
Hurst exponent is coded as colour ramp from blue (mini-
mum h=0.6) to green to yellow to red (maximum h=1.2).
(a) Baseline simulation of a healthy subject. (b) Simula-
tion imitating subjects suffering from CHF by blocking
PNS influence by 40% and increasing SNS influence by
20%. (c) Simulation imitating subjects suffering from PAF
by blocking PNS influence by 20% and SNS influence by
50%.

The real-time simulation also allows to manipulate sin-
gle values by turning the respective adjusting wheel. This
is much more flexible than conventional method of chang-
ing a certain value for a fixed amount and time period be-
fore simulation.

Live updating curves and flashing light provide direct
feedback of consequences. This makes the simulation of
diseases or medications intuitively explorable for users.
Domain experts can evaluate the plausibility of the model
behaviour without knowledge of the implementation and
suggest further extensions. Students can learn about phys-
iological modelling or about the baroreflex by experiment-
ing with the model. This allows a playful and practical
introduction to the topic with a gamification approach.

6. Conclusion

We have presented a new type of baroreflex simulator,
that utilises distributed virtual functional units (i.e. or-
gans) sinus node, windkessel arteries, lung, parasympathi-
cus, sympathicus and baroreceptors. Simulations run in an
asynchronous manner in real-time and aim to be notably
realistic, because components only share information that
is also shared between organs in a living organism.

The distributed simulator shows realistic responses to
virtual medication and virtual diseases. The influence of
these virtual experiments can be monitored as change of

heart rate dynamics. Furthermore, the model can be intu-
itively operated without knowledge of the implementation.
This can make the model a valuable tool to familiarise stu-
dents and domain experts with the concepts of mathemati-
cal modelling.
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